Home
Class 12
MATHS
The number of solution of the equation t...

The number of solution of the equation `tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2)` is

A

x=1

B

x=-1

C

x=0

D

`x=pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

Solution of tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2) is:

The number of solutions of equation 2 tan^(-1)(x + 1) = cos^(-1)(x/2) .

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2)-4x^(2)) is

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

Find the number of solution of 2 tan^(-1) (tan x) = 6 - x