Home
Class 12
MATHS
If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)...

If `x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r))` is equal to `pi` (b) `pi/2` (c) 0 (d) none of these

A

`pi`

B

`(pi)/(2)`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) \] given the condition \(x^2 + y^2 + z^2 = r^2\). ### Step-by-Step Solution: 1. **Use the Formula for the Sum of Inverse Tangents**: We can use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) + \tan^{-1}(c) = \tan^{-1}\left(\frac{a + b + c - abc}{1 - ab - ac - bc}\right) \] where \(a = \frac{xy}{zr}\), \(b = \frac{yz}{xr}\), and \(c = \frac{xz}{yr}\). 2. **Calculate \(a + b + c\)**: \[ a + b + c = \frac{xy}{zr} + \frac{yz}{xr} + \frac{xz}{yr} \] To combine these fractions, we find a common denominator, which is \(xyzr\): \[ a + b + c = \frac{xy^2 + y^2z + x^2z}{xyzr} \] 3. **Calculate \(abc\)**: \[ abc = \left(\frac{xy}{zr}\right) \left(\frac{yz}{xr}\right) \left(\frac{xz}{yr}\right) = \frac{xyz \cdot xyz}{(zr)(xr)(yr)} = \frac{x^2y^2z^2}{r^3xyz} = \frac{xyz}{r^3} \] 4. **Calculate \(1 - ab - ac - bc\)**: We need to compute \(ab\), \(ac\), and \(bc\): \[ ab = \frac{xy}{zr} \cdot \frac{yz}{xr} = \frac{y^2z}{r^2} \] \[ ac = \frac{xy}{zr} \cdot \frac{xz}{yr} = \frac{x^2z}{r^2} \] \[ bc = \frac{yz}{xr} \cdot \frac{xz}{yr} = \frac{y^2x}{r^2} \] Therefore, \[ ab + ac + bc = \frac{y^2z + x^2z + y^2x}{r^2} \] Thus, \[ 1 - ab - ac - bc = 1 - \frac{y^2z + x^2z + y^2x}{r^2} \] 5. **Substituting into the Inverse Tangent Formula**: Now we substitute \(a + b + c\) and \(abc\) into the formula: \[ \tan^{-1}\left(\frac{\frac{xy^2 + y^2z + x^2z}{xyzr} - \frac{xyz}{r^3}}{1 - \frac{y^2z + x^2z + y^2x}{r^2}}\right) \] 6. **Using the Given Condition**: Since \(x^2 + y^2 + z^2 = r^2\), we can conclude that: \[ 1 - \frac{y^2z + x^2z + y^2x}{r^2} = 0 \] This means we are dividing by zero, leading to: \[ \tan^{-1}(\text{undefined}) = \tan^{-1}(\infty) \] 7. **Final Result**: The value of \(\tan^{-1}(\infty)\) is \(\frac{\pi}{2}\). ### Conclusion: Thus, the answer to the given problem is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to (a) pi (b) pi/2 (c) 0 (d) none of these

If x<0,\ y<0 such that x y=1 , then tan^(-1)x+tan^(-1)y equals pi/2 (b) -pi/2 (c) pi (d) none of these

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If tan ^(-1 )""(yz )/( xr ) + tan ^(-1 )""(zx)/(yr) + tan ^(-1) ""(xy)/(zr) =(pi)/(2) , prove that , x^(2) + y^(2) + z^(2) = r^(2)

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  2. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  5. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. Let x(1) " and " x(2) ( x(1) gt x(2)) be roots of the equation sin^(-...

    Text Solution

    |

  7. The value of cos(2cos^(-1)0.8) is

    Text Solution

    |

  8. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  9. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  10. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  13. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  14. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4ta...

    Text Solution

    |

  15. If A=tan^(-1)((x sqrt(3))/(2k-x)) and B= tan^(-1)((2x-k)/(k sqrt(3))),...

    Text Solution

    |

  16. Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

    Text Solution

    |

  17. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  18. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  19. sin^(-1)(sin10) is a+bpi then |a+b| is

    Text Solution

    |

  20. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |