Home
Class 12
MATHS
If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+...

If xy +yz+zx=1 then `tan^(-1)x+tan^(-1)y+tan^(-1)z`=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \) given that \( xy + yz + zx = 1 \). ### Step-by-Step Solution 1. **Use the Identity for Sum of Inverse Tangents**: We start with the identity: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] We will apply this identity to the first two terms, \( \tan^{-1} x \) and \( \tan^{-1} y \): \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] 2. **Add \( \tan^{-1} z \)**: Now, we add \( \tan^{-1} z \) to the result: \[ \tan^{-1} \left( \frac{x + y}{1 - xy} \right) + \tan^{-1} z \] Using the identity again: \[ \tan^{-1} \left( \frac{x + y}{1 - xy} \right) + \tan^{-1} z = \tan^{-1} \left( \frac{\frac{x + y}{1 - xy} + z}{1 - \frac{x + y}{1 - xy} \cdot z} \right) \] 3. **Simplify the Numerator**: The numerator becomes: \[ \frac{x + y + z(1 - xy)}{1 - xy - z(x + y)} \] This simplifies to: \[ x + y + z - xyz \] 4. **Simplify the Denominator**: The denominator becomes: \[ 1 - xy - zx - zy \] By substituting \( xy + yz + zx = 1 \), we have: \[ 1 - 1 = 0 \] 5. **Final Expression**: Therefore, we have: \[ \tan^{-1} \left( \frac{x + y + z - xyz}{0} \right) \] Since division by zero leads to infinity, we conclude: \[ \tan^{-1}(\infty) = \frac{\pi}{2} \] ### Conclusion Thus, we find that: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  2. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  3. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  4. Let x(1) " and " x(2) ( x(1) gt x(2)) be roots of the equation sin^(-...

    Text Solution

    |

  5. The value of cos(2cos^(-1)0.8) is

    Text Solution

    |

  6. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  7. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  8. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  11. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  12. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4ta...

    Text Solution

    |

  13. If A=tan^(-1)((x sqrt(3))/(2k-x)) and B= tan^(-1)((2x-k)/(k sqrt(3))),...

    Text Solution

    |

  14. Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

    Text Solution

    |

  15. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  16. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  17. sin^(-1)(sin10) is a+bpi then |a+b| is

    Text Solution

    |

  18. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  19. The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) p...

    Text Solution

    |

  20. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |