Home
Class 12
MATHS
The value of cot^(-1){(sqrt(1-sinx)+sq...

The value of `cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))`

A

`pi-(x)/(2)`

B

`2pi-x`

C

`(x)/(2)`

D

`2pi-(x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) \). ### Step-by-Step Solution: 1. **Rewrite the expression**: We start with the expression: \[ y = \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \] 2. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ y = \frac{(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})^2}{(\sqrt{1 - \sin x})^2 - (\sqrt{1 + \sin x})^2} \] The denominator simplifies as follows: \[ (\sqrt{1 - \sin x})^2 - (\sqrt{1 + \sin x})^2 = (1 - \sin x) - (1 + \sin x) = -2\sin x \] 3. **Expand the numerator**: Now, expand the numerator: \[ (\sqrt{1 - \sin x} + \sqrt{1 + \sin x})^2 = (1 - \sin x) + (1 + \sin x) + 2\sqrt{(1 - \sin x)(1 + \sin x)} \] This simplifies to: \[ 2 + 2\sqrt{1 - \sin^2 x} = 2 + 2\cos x \] 4. **Combine the results**: So we have: \[ y = \frac{2 + 2\cos x}{-2\sin x} = -\frac{1 + \cos x}{\sin x} \] 5. **Use cotangent identity**: Recognizing that: \[ -\frac{1 + \cos x}{\sin x} = -\cot\left(\frac{x}{2}\right) \] We can rewrite this as: \[ y = \cot\left(\frac{x}{2}\right) \text{ (since } \cot^{-1}(-x) = \pi - \cot^{-1}(x) \text{)} \] 6. **Final result**: Therefore: \[ \cot^{-1}(y) = \cot^{-1}\left(-\cot\left(\frac{x}{2}\right)\right) = \pi - \frac{x}{2} \] Thus, the final answer is: \[ \cot^{-1}\left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) = \pi - \frac{x}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

int(sinx)/(sqrt(1+sinx))dx

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

Differentiate w.r.t. x the function cot^(-1)""((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0 < x < pi/2

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  4. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  5. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4ta...

    Text Solution

    |

  6. If A=tan^(-1)((x sqrt(3))/(2k-x)) and B= tan^(-1)((2x-k)/(k sqrt(3))),...

    Text Solution

    |

  7. Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

    Text Solution

    |

  8. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  9. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  10. sin^(-1)(sin10) is a+bpi then |a+b| is

    Text Solution

    |

  11. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  12. The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) p...

    Text Solution

    |

  13. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  14. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  15. If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(...

    Text Solution

    |

  16. If x takes negative permissible value then sin^(-1)x=

    Text Solution

    |

  17. If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

    Text Solution

    |

  18. If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

    Text Solution

    |

  19. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  20. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |