Home
Class 12
MATHS
If 1/2 le x le 1 then sin^(-1)3x-4x^(3) ...

If `1/2 le x le 1 then sin^(-1)3x-4x^(3)` equals

A

`3 sin^(-1)x`

B

`pi-3 sin^(-1)x`

C

`-pi - 3 sin^(-1)x`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^{-1}(3x - 4x^3) \) given that \( \frac{1}{2} \leq x \leq 1 \). ### Step-by-Step Solution: 1. **Identify the Range for \( x \)**: We are given that \( x \) lies between \( \frac{1}{2} \) and \( 1 \): \[ \frac{1}{2} \leq x \leq 1 \] 2. **Use the Formula for \( \sin^{-1}(3x - 4x^3) \)**: There is a known identity for \( \sin^{-1}(3x - 4x^3) \) when \( x \) is in the range \( \left[\frac{1}{2}, 1\right] \): \[ 3 \sin^{-1}(x) = \pi - \sin^{-1}(3x - 4x^3) \] Therefore, we can rearrange this to express \( \sin^{-1}(3x - 4x^3) \): \[ \sin^{-1}(3x - 4x^3) = \pi - 3 \sin^{-1}(x) \] 3. **Calculate \( \sin^{-1}(x) \)**: Since \( x \) is in the range \( \left[\frac{1}{2}, 1\right] \), we can find \( \sin^{-1}(x) \) for specific values of \( x \): - If \( x = \frac{1}{2} \), then \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \). - If \( x = 1 \), then \( \sin^{-1}(1) = \frac{\pi}{2} \). 4. **Substituting Values**: Now, substituting \( \sin^{-1}(x) \) back into our equation: - For \( x = \frac{1}{2} \): \[ \sin^{-1}(3 \cdot \frac{1}{2} - 4 \cdot \left(\frac{1}{2}\right)^3) = \pi - 3 \cdot \frac{\pi}{6} = \pi - \frac{\pi}{2} = \frac{\pi}{2} \] - For \( x = 1 \): \[ \sin^{-1}(3 \cdot 1 - 4 \cdot 1^3) = \pi - 3 \cdot \frac{\pi}{2} = \pi - \frac{3\pi}{2} = -\frac{\pi}{2} \] 5. **Conclusion**: Therefore, for \( x \) in the interval \( \left[\frac{1}{2}, 1\right] \), we conclude that: \[ \sin^{-1}(3x - 4x^3) = \pi - 3 \sin^{-1}(x) \] ### Final Answer: The value of \( \sin^{-1}(3x - 4x^3) \) is \( \pi - 3 \sin^{-1}(x) \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

If -1 le x le -1/2 , then sin^(-1)(3x-4x^3) equals

If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  2. If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  3. If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  6. if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  7. if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  8. If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

    Text Solution

    |

  9. If x in (1,oo) then tan^(-1)((2x)/(1-x^(2))) equals

    Text Solution

    |

  10. if x in (-oo,-1) then tan^(-1)(2x)/(1-x^(2)) equals

    Text Solution

    |

  11. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  12. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  13. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  14. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  15. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  16. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  17. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  18. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  19. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  20. If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then

    Text Solution

    |