Home
Class 12
MATHS
If -oo lt x le 0 then cos ^(-1)((1-x^(2)...

If `-oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))`equals

A

`2tan^(-1)x`

B

`-2 tan^(-1)x`

C

`pi-2 tan^(-1)x`

D

`pi+2tan^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) for \( x \) in the range \( (-\infty, 0] \). ### Step-by-Step Solution: 1. **Identify the Range of x**: We know that \( x \) is in the interval \( (-\infty, 0] \). 2. **Use the Inverse Trigonometric Identity**: We can use the identity: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = \begin{cases} 2 \tan^{-1}(x) & \text{if } x \geq 0 \\ -2 \tan^{-1}(x) & \text{if } x < 0 \end{cases} \] 3. **Apply the Identity for \( x < 0 \)**: Since \( x \) is less than 0 in our case, we will use the second part of the identity: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = -2 \tan^{-1}(x) \] 4. **Final Result**: Therefore, for \( x \in (-\infty, 0] \): \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = -2 \tan^{-1}(x) \] ### Conclusion: The value of \( \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) when \( x \) is in the range \( (-\infty, 0] \) is \( -2 \tan^{-1}(x) \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  2. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  3. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  4. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  5. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  6. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  7. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  8. If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

    Text Solution

    |

  10. The value of cos(tan^-1 (tan 2)) is

    Text Solution

    |

  11. If sec^(-1) x = cosec^(-1) y, then find the value of cos^(-1).(1)/(x) ...

    Text Solution

    |

  12. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  13. If tan^(-1) . x/pi lt pi/3 , x in N , then the maximum value of x is

    Text Solution

    |

  14. Range of the function f(x)= cos^(-1)(-{x}) , where {.} is fractional...

    Text Solution

    |

  15. sec^(-1)(sin x) exist if

    Text Solution

    |

  16. cot((pi)/(4)-2 cot^(-1)3) is :

    Text Solution

    |

  17. Solve [cot^(-1) x] + [cos^(-1) x] =0, where [.] denotes the greatest i...

    Text Solution

    |

  18. Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

    Text Solution

    |

  19. If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |