Home
Class 12
MATHS
If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-...

If `sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x` then

A

`x in -(-oo,-1)`

B

`x in (1,oo)`

C

`x in [0,1]`

D

`x in [-1,0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 4 \tan^{-1}(x), \] we will follow these steps: ### Step 1: Recognize the Inverse Trigonometric Functions We know that the expressions \(\sin^{-1}\left(\frac{2x}{1+x^2}\right)\) and \(\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\) can be derived from the double angle formulas for tangent. Specifically, we can use the identity: \[ \tan^{-1}(x) = \frac{1}{2} \sin^{-1}\left(\frac{2x}{1+x^2}\right). \] ### Step 2: Rewrite the Equation Using the identity, we can rewrite the left-hand side: \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2 \tan^{-1}(x). \] Thus, we can rewrite the equation as: \[ 2 \tan^{-1}(x) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 4 \tan^{-1}(x). \] ### Step 3: Simplify the Equation Subtract \(2 \tan^{-1}(x)\) from both sides: \[ \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2 \tan^{-1}(x). \] ### Step 4: Use the Identity for Cosine We know that: \[ \cos^{-1}(y) = \frac{\pi}{2} - \sin^{-1}(y). \] Thus, we can rewrite the left-hand side using the sine function: \[ \frac{\pi}{2} - \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2 \tan^{-1}(x). \] ### Step 5: Rearranging the Equation Rearranging gives us: \[ \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \frac{\pi}{2} - 2 \tan^{-1}(x). \] ### Step 6: Use the Sine Function Taking the sine of both sides, we have: \[ \frac{1-x^2}{1+x^2} = \sin\left(\frac{\pi}{2} - 2 \tan^{-1}(x)\right) = \cos(2 \tan^{-1}(x)). \] ### Step 7: Use the Cosine Double Angle Formula Using the double angle formula for cosine: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}, \] we can substitute \(\theta = \tan^{-1}(x)\): \[ \cos(2 \tan^{-1}(x)) = \frac{1 - x^2}{1 + x^2}. \] ### Step 8: Set the Equations Equal Now we have: \[ \frac{1-x^2}{1+x^2} = \frac{1-x^2}{1+x^2}. \] This equation is always true for all \(x\) where the expressions are defined. ### Step 9: Determine the Range of x Since we have derived that both sides are equal, we need to find the valid range for \(x\). The expressions \(\sin^{-1}\) and \(\cos^{-1}\) are defined for: - \(\frac{2x}{1+x^2}\) must be in the range \([-1, 1]\). - \(\frac{1-x^2}{1+x^2}\) must also be in the range \([-1, 1]\). ### Step 10: Find the Intersection of Ranges The first expression is valid for \(x\) in the interval \([-1, 1]\), and the second expression is valid for \(x\) in the interval \([0, \infty)\). Thus, the intersection of these two ranges is: \[ x \in [0, 1]. \] ### Final Answer Therefore, the solution to the equation is: \[ x \in [0, 1]. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Consider a function f(x)="sin"^(-1) (2x)/(1+x^(2))+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR) , the value of a if f(x)=0 for all x :

If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3, then x is equal to

If sin^(-1)((2a)/(1+a^2))-cos^(-1)((1-b^2)/(1+b^2))=tan^(-1)((2x)/(1-x^2)) , then prove that x=(a-b)/(1+a b)

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  2. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  3. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  4. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  5. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  6. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  7. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  8. If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

    Text Solution

    |

  10. The value of cos(tan^-1 (tan 2)) is

    Text Solution

    |

  11. If sec^(-1) x = cosec^(-1) y, then find the value of cos^(-1).(1)/(x) ...

    Text Solution

    |

  12. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  13. If tan^(-1) . x/pi lt pi/3 , x in N , then the maximum value of x is

    Text Solution

    |

  14. Range of the function f(x)= cos^(-1)(-{x}) , where {.} is fractional...

    Text Solution

    |

  15. sec^(-1)(sin x) exist if

    Text Solution

    |

  16. cot((pi)/(4)-2 cot^(-1)3) is :

    Text Solution

    |

  17. Solve [cot^(-1) x] + [cos^(-1) x] =0, where [.] denotes the greatest i...

    Text Solution

    |

  18. Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

    Text Solution

    |

  19. If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |