Home
Class 12
MATHS
If tan^(-1) x + tan^(-1)y + tan^(-1)z= p...

If `tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z` is equal to

A

xyz

B

0

C

1

D

2 xyz

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y + z \) given that: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi \] ### Step-by-Step Solution: 1. **Use the Identity for Sum of Inverses**: We start by using the identity for the sum of two inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] We can apply this identity to the first two terms: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] 2. **Substituting into the Original Equation**: Substitute this back into the original equation: \[ \tan^{-1} \left( \frac{x + y}{1 - xy} \right) + \tan^{-1} z = \pi \] 3. **Using the Identity Again**: Now, we apply the identity again: \[ \tan^{-1} \left( \frac{x + y}{1 - xy} \right) + \tan^{-1} z = \tan^{-1} \left( \frac{\frac{x + y}{1 - xy} + z}{1 - \frac{x + y}{1 - xy} \cdot z} \right) \] Setting this equal to \( \pi \), we know that: \[ \tan(\pi) = 0 \] 4. **Setting Up the Equation**: Therefore, we have: \[ \frac{\frac{x + y}{1 - xy} + z}{1 - \frac{x + y}{1 - xy} \cdot z} = 0 \] For this fraction to be zero, the numerator must be zero: \[ \frac{x + y}{1 - xy} + z = 0 \] 5. **Rearranging the Equation**: Rearranging gives us: \[ x + y + z = 0 \cdot (1 - xy) \implies x + y + z = -z \] 6. **Final Equation**: By multiplying through by \( 1 - xy \) and simplifying, we arrive at: \[ x + y + z - xyz = 0 \] Thus, we can conclude: \[ x + y + z = xyz \] ### Conclusion: The value of \( x + y + z \) is equal to \( xyz \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi , then prove that x + y + 2z = xz^2 + yz^2 + 2xyz

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi/2,t h e n x+y+z-x y z=0 x+y+z+x y z=0 x y+y z+z x+1=0 x y+y z+z x-1=0

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  2. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  3. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  4. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  5. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  6. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  7. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  8. If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

    Text Solution

    |

  10. The value of cos(tan^-1 (tan 2)) is

    Text Solution

    |

  11. If sec^(-1) x = cosec^(-1) y, then find the value of cos^(-1).(1)/(x) ...

    Text Solution

    |

  12. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  13. If tan^(-1) . x/pi lt pi/3 , x in N , then the maximum value of x is

    Text Solution

    |

  14. Range of the function f(x)= cos^(-1)(-{x}) , where {.} is fractional...

    Text Solution

    |

  15. sec^(-1)(sin x) exist if

    Text Solution

    |

  16. cot((pi)/(4)-2 cot^(-1)3) is :

    Text Solution

    |

  17. Solve [cot^(-1) x] + [cos^(-1) x] =0, where [.] denotes the greatest i...

    Text Solution

    |

  18. Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

    Text Solution

    |

  19. If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |