Home
Class 12
MATHS
sec^(-1)(sin x) exist if...

`sec^(-1)(sin x)` exist if

A

`x on (-oo,oo)`

B

`x in [-1,1]`

C

`x=(2n+1)(pi)/(2),x in Z`

D

`x=npi , x in z`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( x \) for which \( \sec^{-1}(\sin x) \) exists, we need to analyze the ranges and domains of the involved functions. ### Step-by-Step Solution: 1. **Understanding the Functions**: - The function \( \sin x \) has a range of \([-1, 1]\). - The function \( \sec^{-1}(y) \) is defined for \( y \) such that \( y \leq -1 \) or \( y \geq 1 \). This means that the values of \( y \) must either be less than or equal to -1 or greater than or equal to 1. 2. **Setting Up the Inequalities**: - Since \( \sec^{-1}(\sin x) \) exists only when \( \sin x \) takes values in the domain of \( \sec^{-1} \), we need to find when: \[ \sin x \leq -1 \quad \text{or} \quad \sin x \geq 1 \] 3. **Analyzing the Sine Function**: - The sine function \( \sin x \) can never actually be less than -1 or greater than 1. Therefore, we check the boundary conditions: - \( \sin x = 1 \) occurs at \( x = \frac{\pi}{2} + 2n\pi \) for \( n \in \mathbb{Z} \). - \( \sin x = -1 \) occurs at \( x = \frac{3\pi}{2} + 2n\pi \) for \( n \in \mathbb{Z} \). 4. **Finding the Values of \( x \)**: - The values of \( x \) for which \( \sec^{-1}(\sin x) \) exists are: \[ x = \frac{\pi}{2} + 2n\pi \quad \text{(for } \sin x = 1\text{)} \] \[ x = \frac{3\pi}{2} + 2n\pi \quad \text{(for } \sin x = -1\text{)} \] - We can express these conditions in a more general form: \[ x = (2n + 1)\frac{\pi}{2} \quad \text{for } n \in \mathbb{Z} \] 5. **Conclusion**: - Therefore, the values of \( x \) for which \( \sec^{-1}(\sin x) \) exists are given by: \[ x = (2n + 1)\frac{\pi}{2}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Which of the following limits does not exist ?(a) lim_(x->oo) cosec^(-1) (x/(x+7) (B) lim_(x->1) sec^(-1) (sin^(-1)x) (C) lim_(x->0^+) x^(1/x) (D) lim_(x->0) (tan(pi/8+x))^(cotx)

Find the value of x for which sec^(-1) x + sin^(-1) x = (pi)/(2)

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(-1)x)+(1)/(sqrt(x-2)) exists is

If 0^(@) le A le 90^(@), find A, if : (sin A)/ (sec A - 1) + (sin A)/ (sec A + 1) = 2

Find the value of x for which sec^(-1)x+sin^(-1)x=pi/2dot

Evaluate: ("lim")_(xvec1)("sin"{x})/({x}) if exists, where {x} is the fractional part of xdot

The derivative of sec^(-1)(1/(2x^2-1)) with respect to sqrt(1+3x) at x=-1/3 (a) does not exist (b) 0 (c) 1/2 (d) 1/3

Find the derivative of f given by f(x)=sin^(-1)x assuming it exists.

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  2. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  3. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  4. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  5. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  6. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  7. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  8. If 1 tan^(-1) x + sin^(-1).(2x)/(1 + x^(2)) is independent of x, then

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

    Text Solution

    |

  10. The value of cos(tan^-1 (tan 2)) is

    Text Solution

    |

  11. If sec^(-1) x = cosec^(-1) y, then find the value of cos^(-1).(1)/(x) ...

    Text Solution

    |

  12. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  13. If tan^(-1) . x/pi lt pi/3 , x in N , then the maximum value of x is

    Text Solution

    |

  14. Range of the function f(x)= cos^(-1)(-{x}) , where {.} is fractional...

    Text Solution

    |

  15. sec^(-1)(sin x) exist if

    Text Solution

    |

  16. cot((pi)/(4)-2 cot^(-1)3) is :

    Text Solution

    |

  17. Solve [cot^(-1) x] + [cos^(-1) x] =0, where [.] denotes the greatest i...

    Text Solution

    |

  18. Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

    Text Solution

    |

  19. If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |