Home
Class 12
MATHS
int(-pi)^(pi) [cos px-sin qx]^(2) dx whe...

`int_(-pi)^(pi) [cos px-sin qx]^(2)` dx where p,q are integers is equal to

A

`-pi`

B

0

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\pi}^{\pi} [\cos(px) - \sin(qx)]^2 \, dx \), where \( p \) and \( q \) are integers, we can follow these steps: ### Step 1: Expand the integrand We start by expanding the expression inside the integral: \[ I = \int_{-\pi}^{\pi} [\cos(px) - \sin(qx)]^2 \, dx \] Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \), we can rewrite the integrand: \[ I = \int_{-\pi}^{\pi} [\cos^2(px) - 2\cos(px)\sin(qx) + \sin^2(qx)] \, dx \] ### Step 2: Separate the integral Now we can separate the integral into three parts: \[ I = \int_{-\pi}^{\pi} \cos^2(px) \, dx - 2 \int_{-\pi}^{\pi} \cos(px)\sin(qx) \, dx + \int_{-\pi}^{\pi} \sin^2(qx) \, dx \] ### Step 3: Evaluate the integral of the odd function The term \( \int_{-\pi}^{\pi} \cos(px)\sin(qx) \, dx \) is zero because the integrand is an odd function (the product of an even function \( \cos(px) \) and an odd function \( \sin(qx) \)): \[ \int_{-\pi}^{\pi} \cos(px)\sin(qx) \, dx = 0 \] ### Step 4: Evaluate the remaining integrals Now we need to evaluate the two remaining integrals: 1. \( \int_{-\pi}^{\pi} \cos^2(px) \, dx \) 2. \( \int_{-\pi}^{\pi} \sin^2(qx) \, dx \) Using the identities: \[ \cos^2(px) = \frac{1 + \cos(2px)}{2}, \quad \sin^2(qx) = \frac{1 - \cos(2qx)}{2} \] We can rewrite the integrals: \[ \int_{-\pi}^{\pi} \cos^2(px) \, dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2px)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx + \int_{-\pi}^{\pi} \cos(2px) \, dx \right) \] The integral of \( 1 \) over the interval is: \[ \int_{-\pi}^{\pi} 1 \, dx = 2\pi \] And since \( \cos(2px) \) is also an even function, its integral over a symmetric interval around zero is zero: \[ \int_{-\pi}^{\pi} \cos(2px) \, dx = 0 \] Thus, we have: \[ \int_{-\pi}^{\pi} \cos^2(px) \, dx = \frac{1}{2} (2\pi + 0) = \pi \] Similarly, for \( \sin^2(qx) \): \[ \int_{-\pi}^{\pi} \sin^2(qx) \, dx = \int_{-\pi}^{\pi} \frac{1 - \cos(2qx)}{2} \, dx = \frac{1}{2} \left( \int_{-\pi}^{\pi} 1 \, dx - \int_{-\pi}^{\pi} \cos(2qx) \, dx \right) \] Again, we find: \[ \int_{-\pi}^{\pi} \sin^2(qx) \, dx = \frac{1}{2} (2\pi - 0) = \pi \] ### Step 5: Combine the results Now we can combine the results: \[ I = \pi - 0 + \pi = 2\pi \] ### Final Result Thus, the value of the integral is: \[ \int_{-\pi}^{\pi} [\cos(px) - \sin(qx)]^2 \, dx = 2\pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

overset(pi)underset(-pi)int [cos px-sin qx]^(2) dx where p,q are integers is equal to

int_(pi//6)^(pi//2) cos x dx

int_(-pi/2)^(pi/2) |sin x| dx

int_(0)^(pi) [2sin x]dx=

int_(-pi/2)^(pi/2) sin x*cos^2 xdx

int_(0)^(pi) x sin x cos^(2)x\ dx

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

int_(0)^(pi//2) x sin x cos x dx

int_(pi//2)^(3pi//2) [2cos x]dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The value of the integral int(-1)^(1) sin^(11)x" dx" is

    Text Solution

    |

  2. The value of int(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx", is

    Text Solution

    |

  3. int(-pi)^(pi) [cos px-sin qx]^(2) dx where p,q are integers is equal t...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The value of int(3)^(5) (x^(2))/(x^(2)-4)dx, is

    Text Solution

    |

  6. The greater value of (x)=int(-1//2)^(x) |t|dt on the interval [-1//2,1...

    Text Solution

    |

  7. f(x)={:{(1-x","" "0 le c le 1),(0","" "1 le x le 2" and "phi ...

    Text Solution

    |

  8. If f(x)=int(-1)^(x)|t|dt, then for any xge0,f(x) equals

    Text Solution

    |

  9. int0^(2) (x-log(2)a)dx=2 log((2)/(a)), if

    Text Solution

    |

  10. If int(1)^(a) (a-4x)dx ge 6-5a, a gt 1, then a equals

    Text Solution

    |

  11. The value of int1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2),...

    Text Solution

    |

  12. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  13. The solution of the equation int(log(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2...

    Text Solution

    |

  14. If int(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6, then

    Text Solution

    |

  15. Let m be any integer. Then, the integral int(0)^(pi) (sin 2m x)/(sin x...

    Text Solution

    |

  16. int(-pi//4)^(pi//4) e^(-x)sin x" dx" is

    Text Solution

    |

  17. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  18. Evaluate : int(-pi/2)^(pi/2)(cosx)/(1+e^x)dx

    Text Solution

    |

  19. int(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

    Text Solution

    |

  20. int(0)^(1) (x)/(1-x)^(3//4)dx=

    Text Solution

    |