Home
Class 12
MATHS
The value of int(3)^(5) (x^(2))/(x^(2)-4...

The value of `int_(3)^(5) (x^(2))/(x^(2)-4)`dx, is

A

`2-log_(e )((15)/(7))`

B

`2+log_(e )((15)/(7))`

C

`2+4log_(e )3-4 log_(e )7+4 log_(e )5`

D

`2-tan^(-1)((15)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 4 in the numerator: \[ I = \int_{3}^{5} \frac{x^2 - 4 + 4}{x^2 - 4} \, dx = \int_{3}^{5} \left( \frac{x^2 - 4}{x^2 - 4} + \frac{4}{x^2 - 4} \right) \, dx \] ### Step 2: Separate the integral This allows us to separate the integral into two parts: \[ I = \int_{3}^{5} 1 \, dx + \int_{3}^{5} \frac{4}{x^2 - 4} \, dx \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_{3}^{5} 1 \, dx = [x]_{3}^{5} = 5 - 3 = 2 \] ### Step 4: Evaluate the second integral For the second integral, we recognize that \( x^2 - 4 = (x - 2)(x + 2) \). We can use the formula for the integral of \( \frac{1}{x^2 - a^2} \): \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \] Here, \( a = 2 \), so we have: \[ \int \frac{4}{x^2 - 4} \, dx = 4 \cdot \frac{1}{4} \ln \left| \frac{x - 2}{x + 2} \right| = \ln \left| \frac{x - 2}{x + 2} \right| \] Now, we evaluate this from 3 to 5: \[ \int_{3}^{5} \frac{4}{x^2 - 4} \, dx = \left[ \ln \left| \frac{x - 2}{x + 2} \right| \right]_{3}^{5} \] ### Step 5: Calculate the limits Calculating the limits: \[ = \ln \left| \frac{5 - 2}{5 + 2} \right| - \ln \left| \frac{3 - 2}{3 + 2} \right| = \ln \left| \frac{3}{7} \right| - \ln \left| \frac{1}{5} \right| \] Using the property of logarithms \( \ln a - \ln b = \ln \left( \frac{a}{b} \right) \): \[ = \ln \left( \frac{3/7}{1/5} \right) = \ln \left( \frac{3 \cdot 5}{7} \right) = \ln \left( \frac{15}{7} \right) \] ### Step 6: Combine results Now, combining both parts of the integral: \[ I = 2 + \ln \left( \frac{15}{7} \right) \] ### Final Result Thus, the value of the integral is: \[ \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx = 2 + \ln \left( \frac{15}{7} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(4)^(5) e^(x) dx

The value of :.int_(0)^([x]) (2^(x))/(2^([x]))dx is

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

int((x-4)^(3))/(x^(2))dx

The value of int_(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of int(dx)/(x^(1/5)(1+x^(4/5))^(1/2) is

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is