Home
Class 12
MATHS
The greater value of (x)=int(-1//2)^(x) ...

The greater value of (x)`=int_(-1//2)^(x) |t|dt` on the interval `[-1//2,1//2]` , is

A

`(3)/(8)`

B

`(1)/(4)`

C

`-(3)/(8)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greater value of the integral \( I = \int_{-\frac{1}{2}}^{x} |t| \, dt \) on the interval \( [-\frac{1}{2}, \frac{1}{2}] \), we will evaluate the integral step by step. ### Step 1: Understand the modulus function The modulus function \( |t| \) behaves differently depending on the sign of \( t \): - For \( t < 0 \), \( |t| = -t \) - For \( t \geq 0 \), \( |t| = t \) ### Step 2: Split the integral based on the limits Since we are integrating from \( -\frac{1}{2} \) to \( x \), we need to consider two cases based on the value of \( x \): 1. When \( x < 0 \) 2. When \( x \geq 0 \) ### Step 3: Case 1: \( x < 0 \) In this case, we will integrate from \( -\frac{1}{2} \) to \( x \): \[ I = \int_{-\frac{1}{2}}^{x} -t \, dt \] Calculating this integral: \[ I = -\left[ \frac{t^2}{2} \right]_{-\frac{1}{2}}^{x} = -\left( \frac{x^2}{2} - \frac{(-\frac{1}{2})^2}{2} \right) = -\left( \frac{x^2}{2} - \frac{1}{8} \right) \] This simplifies to: \[ I = \frac{1}{8} - \frac{x^2}{2} \] ### Step 4: Case 2: \( x \geq 0 \) In this case, we will integrate from \( -\frac{1}{2} \) to \( 0 \) and then from \( 0 \) to \( x \): \[ I = \int_{-\frac{1}{2}}^{0} -t \, dt + \int_{0}^{x} t \, dt \] Calculating the first integral: \[ \int_{-\frac{1}{2}}^{0} -t \, dt = -\left[ \frac{t^2}{2} \right]_{-\frac{1}{2}}^{0} = -\left( 0 - \frac{1}{8} \right) = \frac{1}{8} \] Calculating the second integral: \[ \int_{0}^{x} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{x} = \frac{x^2}{2} \] Thus, combining both parts: \[ I = \frac{1}{8} + \frac{x^2}{2} \] ### Step 5: Determine the maximum value of \( I \) Now we have two expressions for \( I \): - For \( x < 0 \): \( I = \frac{1}{8} - \frac{x^2}{2} \) - For \( x \geq 0 \): \( I = \frac{1}{8} + \frac{x^2}{2} \) We need to evaluate these at the endpoints of the interval \( [-\frac{1}{2}, \frac{1}{2}] \): 1. At \( x = -\frac{1}{2} \): \[ I = \frac{1}{8} - \frac{(-\frac{1}{2})^2}{2} = \frac{1}{8} - \frac{1/8}{2} = \frac{1}{8} - \frac{1}{16} = \frac{2}{16} - \frac{1}{16} = \frac{1}{16} \] 2. At \( x = 0 \): \[ I = \frac{1}{8} \] 3. At \( x = \frac{1}{2} \): \[ I = \frac{1}{8} + \frac{(\frac{1}{2})^2}{2} = \frac{1}{8} + \frac{1/4}{2} = \frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4} \] ### Conclusion The greater value of \( I \) on the interval \( [-\frac{1}{2}, \frac{1}{2}] \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The greater value of F(x)=int_(1)^(x) |t|dt on the interval [-1//2,1//2] , is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

The difference between the greatest and least values of the function phi(x)=int_(0)^(x) (t+1) dt on [2,3], is\

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

Let f: R rarr R be a continuous odd function, which vanishes exactly at one point and f(1)=1/2 . Suppose that F(x)=int_(-1)^xf(t)dt for all x in [-1,2] and G(x)=int_(-1)^x t|f(f(t))|dt for all x in [-1,2] . If lim_(x rarr 1)(F(x))/(G(x))=1/(14) , Then the value of f(1/2) is