Home
Class 12
MATHS
f(x)={:{(1-x","" "0 le c le 1),(0",""...

`f(x)={:{(1-x","" "0 le c le 1),(0","" "1 le x le 2" and "phi (x)=int_(0)^(x)f(t)" dt"."Then"),((2-x)^(2)","" "2 le x le 3):}`for any `x in [2,3],phi(x)` equals

A

`((x-2)^(3))/(3)`

B

`(1)/(2)-((x-2)^(3))/(3)`

C

`(1)/(2)+((x-2)^(3))/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( \phi(x) = \int_0^x f(t) \, dt \) for \( x \) in the interval \([2, 3]\) using the piecewise function \( f(x) \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} 1 - x & \text{for } 0 \leq x < 1 \\ 0 & \text{for } 1 \leq x < 2 \\ (2 - x)^2 & \text{for } 2 \leq x \leq 3 \end{cases} \] ### Step 2: Set up the integral for \( \phi(x) \) Since we are interested in \( \phi(x) \) for \( x \) in \([2, 3]\), we can express \( \phi(x) \) as: \[ \phi(x) = \int_0^2 f(t) \, dt + \int_2^x f(t) \, dt \] Given that \( f(t) = 0 \) for \( 1 \leq t < 2 \), we can split the integral: \[ \phi(x) = \int_0^1 f(t) \, dt + \int_2^x f(t) \, dt \] ### Step 3: Calculate \( \int_0^1 f(t) \, dt \) For \( 0 \leq t < 1 \), \( f(t) = 1 - t \): \[ \int_0^1 (1 - t) \, dt = \left[ t - \frac{t^2}{2} \right]_0^1 = \left(1 - \frac{1}{2}\right) - (0 - 0) = \frac{1}{2} \] ### Step 4: Calculate \( \int_2^x f(t) \, dt \) for \( 2 \leq x \leq 3 \) For \( 2 \leq t \leq 3 \), \( f(t) = (2 - t)^2 \): \[ \int_2^x (2 - t)^2 \, dt \] We can compute this integral: \[ \int (2 - t)^2 \, dt = \int (4 - 4t + t^2) \, dt = 4t - 2t^2 + \frac{t^3}{3} + C \] Now, evaluate from \( 2 \) to \( x \): \[ \left[ 4t - 2t^2 + \frac{t^3}{3} \right]_2^x \] Calculating at \( t = x \): \[ 4x - 2x^2 + \frac{x^3}{3} \] Calculating at \( t = 2 \): \[ 4(2) - 2(2^2) + \frac{2^3}{3} = 8 - 8 + \frac{8}{3} = \frac{8}{3} \] Thus, \[ \int_2^x (2 - t)^2 \, dt = \left( 4x - 2x^2 + \frac{x^3}{3} \right) - \frac{8}{3} \] ### Step 5: Combine results to find \( \phi(x) \) Now we combine the results: \[ \phi(x) = \frac{1}{2} + \left( 4x - 2x^2 + \frac{x^3}{3} - \frac{8}{3} \right) \] Simplifying: \[ \phi(x) = 4x - 2x^2 + \frac{x^3}{3} - \frac{8}{3} + \frac{1}{2} \] To combine the constants: \[ \frac{1}{2} - \frac{8}{3} = \frac{3}{6} - \frac{16}{6} = -\frac{13}{6} \] Thus, \[ \phi(x) = 4x - 2x^2 + \frac{x^3}{3} - \frac{13}{6} \] ### Step 6: Evaluate \( \phi(3) \) Now we can evaluate \( \phi(3) \): \[ \phi(3) = 4(3) - 2(3^2) + \frac{3^3}{3} - \frac{13}{6} \] Calculating: \[ = 12 - 18 + 9 - \frac{13}{6} = 3 - \frac{13}{6} = \frac{18}{6} - \frac{13}{6} = \frac{5}{6} \] ### Final Answer Thus, for \( x \in [2, 3] \), \( \phi(x) = \frac{5}{6} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

Let f(x)={{:(int_(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le 2):} then the function is