Home
Class 12
MATHS
The solution of the equation int(log(2))...

The solution of the equation `int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2)` is given by x=

A

`e^(2)`

B

`1//e`

C

log 4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{\log 2}^{x} \frac{1}{e^{x}-1} \, dx = \frac{\log 3}{2}, \] we will follow these steps: ### Step 1: Set up the integral We start with the integral given in the equation: \[ I = \int_{\log 2}^{x} \frac{1}{e^{t}-1} \, dt. \] ### Step 2: Change of variables Let us make the substitution \( e^{t} - 1 = u \). Then, we have: \[ e^{t} = u + 1 \quad \text{and} \quad dt = \frac{du}{e^{t}} = \frac{du}{u + 1}. \] ### Step 3: Change the limits of integration When \( t = \log 2 \): \[ u = e^{\log 2} - 1 = 2 - 1 = 1. \] When \( t = x \): \[ u = e^{x} - 1. \] Thus, the integral becomes: \[ I = \int_{1}^{e^{x}-1} \frac{1}{u} \cdot \frac{1}{u + 1} \, du. \] ### Step 4: Simplify the integral using partial fractions We can express \( \frac{1}{u(u + 1)} \) using partial fractions: \[ \frac{1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}. \] ### Step 5: Integrate Now we can integrate: \[ I = \int_{1}^{e^{x}-1} \left( \frac{1}{u} - \frac{1}{u + 1} \right) \, du. \] This gives us: \[ I = \left[ \log u - \log(u + 1) \right]_{1}^{e^{x}-1}. \] ### Step 6: Evaluate the limits Evaluating the integral at the limits: \[ I = \left( \log(e^{x}-1) - \log(e^{x}) \right) - \left( \log(1) - \log(2) \right). \] Since \( \log(1) = 0 \), we have: \[ I = \log(e^{x}-1) - x + \log(2). \] ### Step 7: Set the equation to \(\frac{\log 3}{2}\) Now we set this equal to \(\frac{\log 3}{2}\): \[ \log(e^{x}-1) - x + \log(2) = \frac{\log 3}{2}. \] ### Step 8: Rearranging the equation Rearranging gives: \[ \log(e^{x}-1) = x - \log(2) + \frac{\log 3}{2}. \] ### Step 9: Exponentiate both sides Exponentiating both sides results in: \[ e^{x}-1 = e^{x - \log(2) + \frac{\log 3}{2}}. \] ### Step 10: Solve for \(x\) This simplifies to: \[ e^{x} - 1 = \frac{3}{2} \cdot \frac{e^{x}}{2}. \] Multiplying through by 2 gives: \[ 2e^{x} - 2 = 3e^{x} \implies e^{x} = 2. \] Taking the natural logarithm: \[ x = \log 2. \] ### Final Answer Thus, the solution for \(x\) is: \[ \boxed{\log 4}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The number of solution of the equation log(-2x)= 2 log(x+1) are

int((log _(e)x)^(3))/(x)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

The number of solutions of the equation log_(3)(3+sqrt(x))+log_(3)(1+x^(2))=0 , is

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

The solution of (dy)/(dx)+(y)/(x)=(1)/((1+log x+log y)^(2)) is given by

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is: