Home
Class 12
MATHS
If int(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))...

If `int_(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6`, then

A

`a=4,b=12,n in R`

B

`a=2,b=14,n in R`

C

`a=-4,b=20,n in R`

D

`a=2,b=8, n in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation given in the problem, we will follow a systematic approach using properties of definite integrals. ### Step-by-step Solution: 1. **Given Integral**: We start with the integral equation: \[ I = \int_{a}^{b} \frac{x^n}{x^n + (16 - x)^n} \, dx = 6 \] 2. **Use the Property of Integrals**: We can use the property of integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] Here, let \( a + b = 16 \). Therefore, we can rewrite the integral as: \[ I = \int_{a}^{b} \frac{(16 - x)^n}{(16 - x)^n + x^n} \, dx \] 3. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_{a}^{b} \frac{x^n}{x^n + (16 - x)^n} \, dx \] and \[ I = \int_{a}^{b} \frac{(16 - x)^n}{(16 - x)^n + x^n} \, dx \] Adding these two equations gives: \[ 2I = \int_{a}^{b} \left( \frac{x^n}{x^n + (16 - x)^n} + \frac{(16 - x)^n}{(16 - x)^n + x^n} \right) \, dx \] 4. **Simplifying the Expression**: The sum inside the integral simplifies to: \[ 2I = \int_{a}^{b} 1 \, dx \] This is because the two fractions add up to 1. 5. **Evaluate the Integral**: Now, we can evaluate the integral: \[ 2I = \int_{a}^{b} 1 \, dx = b - a \] 6. **Substituting the Value of I**: We know from the problem statement that \( I = 6 \): \[ 2 \cdot 6 = b - a \implies 12 = b - a \] 7. **Using the Sum of Limits**: We also have the equation from our assumption: \[ a + b = 16 \] 8. **Solving the System of Equations**: Now we have a system of equations: \[ b - a = 12 \quad \text{(1)} \] \[ a + b = 16 \quad \text{(2)} \] From equation (1), we can express \( b \) in terms of \( a \): \[ b = a + 12 \] Substituting this into equation (2): \[ a + (a + 12) = 16 \implies 2a + 12 = 16 \implies 2a = 4 \implies a = 2 \] Now substituting \( a = 2 \) back into \( b = a + 12 \): \[ b = 2 + 12 = 14 \] 9. **Final Values**: Thus, the values of \( a \) and \( b \) are: \[ a = 2, \quad b = 14 \] ### Conclusion: The values of \( a \) and \( b \) that satisfy the integral equation are \( a = 2 \) and \( b = 14 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6 , then

Evaluate of each of the following integral: int_a^b(x^(1//n))/(x^(1//n)+(a+b-x)^(1/n))dx , \ ngeq2

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

int (2x^(n-1))/(x^n+3) dx

inte^(x) .(a+be^(x))^(n) dx

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (m, n) is

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Using properties of definite integration evaluate : int_(a)^(b) (root(n)x)/(root(n)x+root(n)(a+b-x))dx