Home
Class 12
MATHS
Let m be any integer. Then, the integral...

Let m be any integer. Then, the integral `int_(0)^(pi) (sin 2m x)/(sin x)dx` equals

A

0

B

`pi`

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi) [2sin x]dx=

STATEMENT 1: Let m be any integer. Then the value of I_m=int_0^pi(sin2m x)/(sinx)dx is zero. STATEMENT 2 : I_1=I_2=I_3==I_m

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) sin 2x log tan x dx is equal to