Home
Class 12
MATHS
int(-pi//4)^(pi//4) e^(-x)sin x" dx" is...

`int_(-pi//4)^(pi//4) e^(-x)sin x" dx"` is

A

`-(sqrt(2))/(2)e^(-pi//4)`

B

`(sqrt(2))/(2)e^(-pi//4)`

C

`sqrt(2)(e^(-pi//4)-e^(pi//4))`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-x} \sin x \, dx \), we will use integration by parts. Here’s a step-by-step solution: ### Step 1: Set Up the Integral Let \[ I = \int e^{-x} \sin x \, dx \] ### Step 2: Apply Integration by Parts Using integration by parts, we choose: - \( u = \sin x \) and \( dv = e^{-x} dx \) - Then, \( du = \cos x \, dx \) and \( v = -e^{-x} \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I = -e^{-x} \sin x - \int -e^{-x} \cos x \, dx \] This simplifies to: \[ I = -e^{-x} \sin x + \int e^{-x} \cos x \, dx \] ### Step 3: Apply Integration by Parts Again Now, we need to evaluate the integral \( \int e^{-x} \cos x \, dx \). We apply integration by parts again: - Let \( u = \cos x \) and \( dv = e^{-x} dx \) - Then, \( du = -\sin x \, dx \) and \( v = -e^{-x} \) Applying integration by parts: \[ \int e^{-x} \cos x \, dx = -e^{-x} \cos x - \int -e^{-x} (-\sin x) \, dx \] This simplifies to: \[ \int e^{-x} \cos x \, dx = -e^{-x} \cos x - \int e^{-x} \sin x \, dx \] Thus, we can express this as: \[ \int e^{-x} \cos x \, dx = -e^{-x} \cos x - I \] ### Step 4: Substitute Back Substituting this back into our expression for \( I \): \[ I = -e^{-x} \sin x - e^{-x} \cos x - I \] Now, rearranging gives: \[ 2I = -e^{-x} (\sin x + \cos x) \] Thus, \[ I = -\frac{1}{2} e^{-x} (\sin x + \cos x) \] ### Step 5: Evaluate the Definite Integral Now we apply the limits from \( -\frac{\pi}{4} \) to \( \frac{\pi}{4} \): \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \left( \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right) - e^{\frac{\pi}{4}} \left( \sin \left(-\frac{\pi}{4}\right) + \cos \left(-\frac{\pi}{4}\right) \right) \right] \] Since \( \sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \): \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - e^{\frac{\pi}{4}} \left( -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \right] \] This simplifies to: \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \cdot \frac{2}{\sqrt{2}} + 0 \right] \] Thus, \[ I = -\frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}} \] ### Final Result The final answer is: \[ I = -\frac{\sqrt{2}}{2} e^{-\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

int_(-pi//4) ^(pi//4) x^(3) sin^(4) xdx=

Evaluate the following integral: int_(-pi//4)^(pi//4)|sin x|dx

Evaluate the following definite integral: int_(-pi//4)^(pi//4)1/(1+sin x)dx

Evaluate the following integral: int_(-pi//4)^(pi//4)sin^2x\ dx

Evaluate: int_(-pi//4)^(pi//4)x^3sin^4xdx (ii) int_( a)^asqrt((a-x)/(a+x))dx

Evaluate: int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sin x))dx

int_(pi//6)^(pi//3) sin(3x)dx=