Home
Class 12
MATHS
int(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))...

`int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=`

A

`(3)/(8)`

B

`(1)/(8)`

C

`-(3)/(8)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{dx}{(x + \sqrt{x^2 + 1})^3} \] we will use a substitution method. Let's go through the solution step by step. ### Step 1: Substitution Let \[ t = x + \sqrt{x^2 + 1} \] Now, we need to express \(x\) in terms of \(t\). Rearranging gives: \[ \sqrt{x^2 + 1} = t - x \] Squaring both sides, we get: \[ x^2 + 1 = (t - x)^2 \] Expanding the right side: \[ x^2 + 1 = t^2 - 2tx + x^2 \] Cancelling \(x^2\) from both sides, we have: \[ 1 = t^2 - 2tx \] Rearranging gives: \[ 2tx = t^2 - 1 \implies x = \frac{t^2 - 1}{2t} \] ### Step 2: Finding \(dx\) Next, we differentiate \(x\) with respect to \(t\): \[ dx = \frac{d}{dt}\left(\frac{t^2 - 1}{2t}\right) \] Using the quotient rule: \[ dx = \frac{(2t)(2t) - (t^2 - 1)(2)}{(2t)^2} dt = \frac{4t^2 - 2(t^2 - 1)}{4t^2} dt = \frac{4t^2 - 2t^2 + 2}{4t^2} dt = \frac{2t^2 + 2}{4t^2} dt = \frac{t^2 + 1}{2t^2} dt \] ### Step 3: Changing the limits When \(x = 0\): \[ t = 0 + \sqrt{0^2 + 1} = 1 \] When \(x \to \infty\): \[ t = \infty + \sqrt{\infty^2 + 1} \to \infty \] Thus, the limits of integration change from \(0\) to \(\infty\) in terms of \(x\) to \(1\) to \(\infty\) in terms of \(t\). ### Step 4: Substitute into the integral Now substituting \(x\) and \(dx\) into the integral: \[ I = \int_{1}^{\infty} \frac{1}{t^3} \cdot \frac{t^2 + 1}{2t^2} dt = \frac{1}{2} \int_{1}^{\infty} \frac{t^2 + 1}{t^5} dt \] This can be separated into two integrals: \[ I = \frac{1}{2} \left( \int_{1}^{\infty} \frac{1}{t^3} dt + \int_{1}^{\infty} \frac{1}{t^5} dt \right) \] ### Step 5: Evaluate the integrals Calculating the first integral: \[ \int_{1}^{\infty} \frac{1}{t^3} dt = \left[-\frac{1}{2t^2}\right]_{1}^{\infty} = 0 - \left(-\frac{1}{2}\right) = \frac{1}{2} \] Calculating the second integral: \[ \int_{1}^{\infty} \frac{1}{t^5} dt = \left[-\frac{1}{4t^4}\right]_{1}^{\infty} = 0 - \left(-\frac{1}{4}\right) = \frac{1}{4} \] ### Step 6: Combine the results Now substituting back into the expression for \(I\): \[ I = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{4} \right) = \frac{1}{2} \left( \frac{2}{4} + \frac{1}{4} \right) = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{3}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int_(0)^(a) (x)/(sqrt(a^(2)-x^(2)))dx

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

Prove that: int_(-a)^(a) x^(3) sqrt(a^(2) -x^(2) ) dx=0