Home
Class 12
MATHS
int(0)^(1) (x)/(1-x)^(3//4)dx=...

`int_(0)^(1) (x)/(1-x)^(3//4)dx=`

A

`(12)/(5)`

B

`(16)/(5)`

C

`-(16)/(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x}{(1-x)^{3/4}} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( 1 - x = t^4 \). Then, we differentiate to find \( dx \): \[ dx = -4t^3 \, dt \] Next, we need to change the limits of integration. When \( x = 0 \), \( t^4 = 1 \) which gives \( t = 1 \). When \( x = 1 \), \( t^4 = 0 \) which gives \( t = 0 \). ### Step 2: Change the Integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{1}^{0} \frac{1 - t^4}{(t^4)^{3/4}} (-4t^3) \, dt \] This simplifies to: \[ I = \int_{1}^{0} \frac{1 - t^4}{t^3} (-4t^3) \, dt = \int_{1}^{0} -4(1 - t^4) \, dt \] ### Step 3: Reverse the Limits Reversing the limits changes the sign: \[ I = 4 \int_{0}^{1} (1 - t^4) \, dt \] ### Step 4: Integrate Now we can integrate: \[ I = 4 \left( \int_{0}^{1} 1 \, dt - \int_{0}^{1} t^4 \, dt \right) \] Calculating the integrals separately: \[ \int_{0}^{1} 1 \, dt = [t]_{0}^{1} = 1 \] \[ \int_{0}^{1} t^4 \, dt = \left[ \frac{t^5}{5} \right]_{0}^{1} = \frac{1}{5} \] Thus, \[ I = 4 \left( 1 - \frac{1}{5} \right) = 4 \left( \frac{5}{5} - \frac{1}{5} \right) = 4 \left( \frac{4}{5} \right) = \frac{16}{5} \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{16}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x dx

int_(0)^(1)(dx)/(1+x)

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

int_(0)^(1)(2x)/((1+x^(4)))dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Let n in N such that n gt 1 . Statement-1: int_(oo)^(0) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx Statement-2: int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx

int_(0)^(1) (1)/(1+x+2x^(2))dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to