Home
Class 12
MATHS
int(0)^(pi) xsin x cos^(4)x dx=...

`int_(0)^(pi) xsin x cos^(4)x dx=`

A

`(pi)/(10)`

B

`(pi)/(5)`

C

`-(pi)/(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin x \cos^4 x \, dx \), we can use a property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In this case, \( a = 0 \) and \( b = \pi \), so we can rewrite the integral as follows: ### Step 1: Apply the property of definite integrals \[ I = \int_{0}^{\pi} x \sin x \cos^4 x \, dx = \int_{0}^{\pi} (\pi - x) \sin(\pi - x) \cos^4(\pi - x) \, dx \] ### Step 2: Simplify the expression Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can simplify: \[ I = \int_{0}^{\pi} (\pi - x) \sin x \cos^4 x \, dx \] ### Step 3: Rewrite the integral Now we can express \( I \) as: \[ I = \int_{0}^{\pi} \pi \sin x \cos^4 x \, dx - \int_{0}^{\pi} x \sin x \cos^4 x \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} \sin x \cos^4 x \, dx - I \] ### Step 4: Solve for \( I \) Adding \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \sin x \cos^4 x \, dx \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} \sin x \cos^4 x \, dx \] ### Step 5: Evaluate the integral \( \int_{0}^{\pi} \sin x \cos^4 x \, dx \) To evaluate this integral, we can use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change as follows: when \( x = 0 \), \( t = 1 \) and when \( x = \pi \), \( t = -1 \). Thus: \[ \int_{0}^{\pi} \sin x \cos^4 x \, dx = \int_{1}^{-1} (-t^4) \, dt = \int_{-1}^{1} t^4 \, dt \] ### Step 6: Calculate the integral \( \int_{-1}^{1} t^4 \, dt \) This integral can be computed as: \[ \int_{-1}^{1} t^4 \, dt = 2 \int_{0}^{1} t^4 \, dt = 2 \left[ \frac{t^5}{5} \right]_{0}^{1} = 2 \cdot \frac{1}{5} = \frac{2}{5} \] ### Step 7: Substitute back to find \( I \) Substituting this back into the equation for \( I \): \[ I = \frac{\pi}{2} \cdot \frac{2}{5} = \frac{\pi}{5} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi//6) cos x cos 3x dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

Evaluate: int_(0)^(pi) (xsinx)/(1+cos^(2)x)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :