Home
Class 12
MATHS
int(0)^(pi) [2sin x]dx=...

`int_(0)^(pi) [2sin x]dx=`

A

`2pi//3`

B

`-5pi//3`

C

`-pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} \lfloor 2 \sin x \rfloor \, dx \), where \( \lfloor x \rfloor \) denotes the greatest integer function (or floor function), we will follow these steps: ### Step 1: Analyze the function \( 2 \sin x \) The function \( 2 \sin x \) oscillates between 0 and 2 as \( x \) varies from 0 to \( \pi \). Specifically: - At \( x = 0 \), \( 2 \sin(0) = 0 \) - At \( x = \frac{\pi}{2} \), \( 2 \sin\left(\frac{\pi}{2}\right) = 2 \) - At \( x = \pi \), \( 2 \sin(\pi) = 0 \) ### Step 2: Determine the intervals for the floor function Next, we will find the intervals where \( \lfloor 2 \sin x \rfloor \) takes constant integer values. 1. **From \( 0 \) to \( \frac{\pi}{6} \)**: - \( 2 \sin x \) ranges from \( 0 \) to \( 1 \). - Thus, \( \lfloor 2 \sin x \rfloor = 0 \). 2. **From \( \frac{\pi}{6} \) to \( \frac{5\pi}{6} \)**: - \( 2 \sin x \) ranges from \( 1 \) to \( 2 \). - Thus, \( \lfloor 2 \sin x \rfloor = 1 \). 3. **From \( \frac{5\pi}{6} \) to \( \pi \)**: - \( 2 \sin x \) ranges from \( 1 \) to \( 0 \). - Thus, \( \lfloor 2 \sin x \rfloor = 0 \). ### Step 3: Set up the integral based on the intervals Now we can break the integral into three parts based on the intervals we determined: \[ \int_{0}^{\pi} \lfloor 2 \sin x \rfloor \, dx = \int_{0}^{\frac{\pi}{6}} 0 \, dx + \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 1 \, dx + \int_{\frac{5\pi}{6}}^{\pi} 0 \, dx \] ### Step 4: Evaluate each part of the integral 1. **First integral**: \[ \int_{0}^{\frac{\pi}{6}} 0 \, dx = 0 \] 2. **Second integral**: \[ \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 1 \, dx = \left[ x \right]_{\frac{\pi}{6}}^{\frac{5\pi}{6}} = \frac{5\pi}{6} - \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] 3. **Third integral**: \[ \int_{\frac{5\pi}{6}}^{\pi} 0 \, dx = 0 \] ### Step 5: Combine the results Combining all parts, we have: \[ \int_{0}^{\pi} \lfloor 2 \sin x \rfloor \, dx = 0 + \frac{2\pi}{3} + 0 = \frac{2\pi}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\pi} \lfloor 2 \sin x \rfloor \, dx = \frac{2\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

int_0^(2pi) sin^2x dx

int_(0)^(pi) x sin^(2) x dx

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

Evaluate the following definite integral: int_0^(pi//4)x^2sin x\ dx

Evaluate the following integral: int_0^(2pi)|sin x|dx

int_(0)^(pi//2) sin^(2) x dx