Home
Class 12
MATHS
int(pi//2)^(3pi//2) [2cos x]dxis equal t...

`int_(pi//2)^(3pi//2) [2cos x]dx`is equal to

A

`(5pi)/(3)`

B

`-(5pi)/(3)`

C

`-pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \lfloor 2 \cos x \rfloor \, dx \), we will follow these steps: ### Step 1: Understand the Function The function \( \lfloor 2 \cos x \rfloor \) represents the greatest integer less than or equal to \( 2 \cos x \). We need to analyze the behavior of \( \cos x \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \). ### Step 2: Evaluate \( \cos x \) in the Interval In the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \): - At \( x = \frac{\pi}{2} \), \( \cos\left(\frac{\pi}{2}\right) = 0 \) - At \( x = \frac{3\pi}{2} \), \( \cos\left(\frac{3\pi}{2}\right) = 0 \) - The maximum value of \( \cos x \) in this interval is \( -1 \) (which occurs at \( x = \pi \)). Thus, \( 2 \cos x \) ranges from \( 0 \) to \( -2 \) in this interval. ### Step 3: Determine the Values of \( \lfloor 2 \cos x \rfloor \) - For \( 2 \cos x \) in \( \left(0, -1\right) \), \( \lfloor 2 \cos x \rfloor = -1 \). - For \( 2 \cos x \) in \( \left[-2, -1\right) \), \( \lfloor 2 \cos x \rfloor = -2 \). ### Step 4: Find the Points of Change To find the points where \( 2 \cos x \) crosses the integer boundaries: - Set \( 2 \cos x = -1 \): \[ \cos x = -\frac{1}{2} \] This occurs at \( x = \frac{2\pi}{3} \) and \( x = \frac{4\pi}{3} \). ### Step 5: Break the Integral into Intervals Now we can break the integral into three parts: 1. From \( \frac{\pi}{2} \) to \( \frac{2\pi}{3} \): Here, \( \lfloor 2 \cos x \rfloor = -1 \). 2. From \( \frac{2\pi}{3} \) to \( \frac{4\pi}{3} \): Here, \( \lfloor 2 \cos x \rfloor = -2 \). 3. From \( \frac{4\pi}{3} \) to \( \frac{3\pi}{2} \): Here, \( \lfloor 2 \cos x \rfloor = -1 \). ### Step 6: Write the Integral Thus, we can write: \[ I = \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} (-1) \, dx + \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} (-2) \, dx + \int_{\frac{4\pi}{3}}^{\frac{3\pi}{2}} (-1) \, dx \] ### Step 7: Evaluate Each Integral 1. For \( \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} (-1) \, dx \): \[ = -\left(\frac{2\pi}{3} - \frac{\pi}{2}\right) = -\left(\frac{4\pi}{6} - \frac{3\pi}{6}\right) = -\frac{\pi}{6} \] 2. For \( \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} (-2) \, dx \): \[ = -2\left(\frac{4\pi}{3} - \frac{2\pi}{3}\right) = -2\left(\frac{2\pi}{3}\right) = -\frac{4\pi}{3} \] 3. For \( \int_{\frac{4\pi}{3}}^{\frac{3\pi}{2}} (-1) \, dx \): \[ = -\left(\frac{3\pi}{2} - \frac{4\pi}{3}\right) = -\left(\frac{9\pi}{6} - \frac{8\pi}{6}\right) = -\frac{\pi}{6} \] ### Step 8: Combine the Results Now, combine all parts: \[ I = -\frac{\pi}{6} - \frac{4\pi}{3} - \frac{\pi}{6} \] \[ = -\frac{\pi}{6} - \frac{8\pi}{6} - \frac{\pi}{6} = -\frac{10\pi}{6} = -\frac{5\pi}{3} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{-\frac{5\pi}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(3pi//2)^(5pi//3) [2cos x]dx=

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(pi//6)^(pi//2) cos x dx

int_(-pi //2)^(pi//2) sin |x|dx is equal to

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to (a) 1 (b) 2 (c) -1 (d) -2

int_(pi/3)^(pi/2) cosec x dx=?

int_(-pi/2)^(pi/2) sin x*cos^2 xdx

int_(0)^(pi//2) x^(2) cos x dx

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) gof(x) dx is equal to (a) (3pi)/(4) (b) (pi)/(4) (c) pi (d) None of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. int(0)^(pi) xsin x cos^(4)x dx=

    Text Solution

    |

  2. int(0)^(pi) [2sin x]dx=

    Text Solution

    |

  3. int(pi//2)^(3pi//2) [2cos x]dxis equal to

    Text Solution

    |

  4. If f(x) satisfies the condition of Rolles theorem in [1, 2] then int1^...

    Text Solution

    |

  5. The tangent lines for the curve y=int(0)^(x)2|t|dt which are parallel ...

    Text Solution

    |

  6. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  7. int pi^(2pi)[sqrt(2)cosx]dx=

    Text Solution

    |

  8. int(0)^(pi//3) [sqrt(3)tanx]dx=

    Text Solution

    |

  9. int(3pi//2)^(5pi//3) [2cos x]dx=

    Text Solution

    |

  10. int(0)^(50pi)| cos x|dx=

    Text Solution

    |

  11. The values of 'a' for which int0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

    Text Solution

    |

  12. If (-1,2) and and (2,4) are two points on the curve y=f(x) and if g(x)...

    Text Solution

    |

  13. If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and I(2)=int(1-x)^(x) sin{x(1-x)}...

    Text Solution

    |

  14. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  15. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  16. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  17. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  18. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  19. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  20. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |