Home
Class 12
MATHS
If f(x)=ae^(2x)+be^(x)+cx, satisfies the...

If f(x)`=ae^(2x)+be^(x)+cx`, satisfies the conditions f(0)=-1, f'(log 2)=31, `int_(0)^(log4) (f(x)-cx)dx=(39)/(2)`, then

A

a=5,b=6,c=3

B

a=5,b=-6,c=3

C

a=-5,b=6, c=3

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If f(x)=e^(x)+2x , then f(ln 2)=

If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) = f(1) = 1 and int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2) , then the value of int_(1)^(e ) f''(x)ln xdx equals :

Suppose f, f' and f'' are continuous on [0, e] and that f'(e )= f(e ) = f(1) = 1 and int_(1)^(e )(f(x))/(x^(2))dx=(1)/(2) , then the value of int_(1)^(e ) f''(x)ln xdx equals :

Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int _(0)^(2) f (x) dx=5.if int _(0) ^(50) f (x) dx=l. Find [sqrtl -2]. (where [.] denotes greatest integer function. )

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If f(x)=log|2x|,xne0 then f'(x) is equal to

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. If f(x) satisfies the condition of Rolles theorem in [1, 2] then int1^...

    Text Solution

    |

  2. The tangent lines for the curve y=int(0)^(x)2|t|dt which are parallel ...

    Text Solution

    |

  3. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  4. int pi^(2pi)[sqrt(2)cosx]dx=

    Text Solution

    |

  5. int(0)^(pi//3) [sqrt(3)tanx]dx=

    Text Solution

    |

  6. int(3pi//2)^(5pi//3) [2cos x]dx=

    Text Solution

    |

  7. int(0)^(50pi)| cos x|dx=

    Text Solution

    |

  8. The values of 'a' for which int0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

    Text Solution

    |

  9. If (-1,2) and and (2,4) are two points on the curve y=f(x) and if g(x)...

    Text Solution

    |

  10. If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and I(2)=int(1-x)^(x) sin{x(1-x)}...

    Text Solution

    |

  11. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  12. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  13. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  14. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  15. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  16. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  17. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  18. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  19. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  20. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |