Home
Class 12
MATHS
int(0)^(50pi)| cos x|dx=...

`int_(0)^(50pi)| cos x|dx=`

A

100

B

50

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{50\pi} |\cos x| \, dx \), we can follow these steps: ### Step 1: Use the periodic property of the cosine function The function \( |\cos x| \) is periodic with a period of \( 2\pi \). Therefore, we can express the integral over the interval \( [0, 50\pi] \) in terms of the integral over one period \( [0, 2\pi] \). \[ I = \int_{0}^{50\pi} |\cos x| \, dx = 25 \int_{0}^{2\pi} |\cos x| \, dx \] ### Step 2: Break down the integral over one period Next, we need to evaluate \( \int_{0}^{2\pi} |\cos x| \, dx \). We can break this integral into two parts where \( \cos x \) is positive and negative: - From \( 0 \) to \( \pi/2 \), \( \cos x \) is positive. - From \( \pi/2 \) to \( \pi \), \( \cos x \) is negative. - From \( \pi \) to \( 3\pi/2 \), \( \cos x \) is negative. - From \( 3\pi/2 \) to \( 2\pi \), \( \cos x \) is positive. Thus, we can write: \[ \int_{0}^{2\pi} |\cos x| \, dx = \int_{0}^{\pi/2} \cos x \, dx + \int_{\pi/2}^{\pi} -\cos x \, dx + \int_{\pi}^{3\pi/2} -\cos x \, dx + \int_{3\pi/2}^{2\pi} \cos x \, dx \] ### Step 3: Evaluate each integral Now we evaluate each integral: 1. \( \int_{0}^{\pi/2} \cos x \, dx = \left[ \sin x \right]_{0}^{\pi/2} = \sin(\pi/2) - \sin(0) = 1 - 0 = 1 \) 2. \( \int_{\pi/2}^{\pi} -\cos x \, dx = -\left[ \sin x \right]_{\pi/2}^{\pi} = -(\sin(\pi) - \sin(\pi/2)) = -(0 - 1) = 1 \) 3. \( \int_{\pi}^{3\pi/2} -\cos x \, dx = -\left[ \sin x \right]_{\pi}^{3\pi/2} = -(\sin(3\pi/2) - \sin(\pi)) = -(-1 - 0) = 1 \) 4. \( \int_{3\pi/2}^{2\pi} \cos x \, dx = \left[ \sin x \right]_{3\pi/2}^{2\pi} = \sin(2\pi) - \sin(3\pi/2) = 0 - (-1) = 1 \) ### Step 4: Combine the results Now we can combine these results: \[ \int_{0}^{2\pi} |\cos x| \, dx = 1 + 1 + 1 + 1 = 4 \] ### Step 5: Calculate the final result Substituting back into the expression for \( I \): \[ I = 25 \int_{0}^{2\pi} |\cos x| \, dx = 25 \times 4 = 100 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{50\pi} |\cos x| \, dx = 100 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos 2x dx

Evaluate : int_(0)^(pi) |cos x| dx

int_(0)^(pi//2) cos 3x dx

Evaluate int_(0)^(4pi)|cos x| dx .

The value of int_(0)^(pi)|cos x|^(3)dx is :

Evaluate int _(0)^(pi/4) cos x dx

Evaluate int _(0)^(pi//2)cos x dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"

int_(0)^(pi/2) cos^(2) x dx

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. int(0)^(pi//3) [sqrt(3)tanx]dx=

    Text Solution

    |

  2. int(3pi//2)^(5pi//3) [2cos x]dx=

    Text Solution

    |

  3. int(0)^(50pi)| cos x|dx=

    Text Solution

    |

  4. The values of 'a' for which int0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

    Text Solution

    |

  5. If (-1,2) and and (2,4) are two points on the curve y=f(x) and if g(x)...

    Text Solution

    |

  6. If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and I(2)=int(1-x)^(x) sin{x(1-x)}...

    Text Solution

    |

  7. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  8. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  9. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  10. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  11. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  12. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  13. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  14. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  15. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  16. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  17. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  18. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  19. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  20. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |