Home
Class 12
MATHS
The values of 'a' for which int0^(a) (3...

The values of 'a' for which `int_0^(a) (3x^(2)+4x-5)dx lt a^(3)-2` are

A

`(1)/(2) lt a lt 2`

B

`(1)/(2) le a le 2`

C

`a le (1)/(2)`

D

`a ge 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \int_0^{a} (3x^2 + 4x - 5) \, dx < a^3 - 2 \), we will follow these steps: ### Step 1: Calculate the integral We start by calculating the definite integral: \[ \int_0^{a} (3x^2 + 4x - 5) \, dx \] Using the power rule for integration, we find: \[ \int (3x^2) \, dx = x^3, \quad \int (4x) \, dx = 2x^2, \quad \int (-5) \, dx = -5x \] Thus, the integral becomes: \[ \int_0^{a} (3x^2 + 4x - 5) \, dx = \left[ x^3 + 2x^2 - 5x \right]_0^{a} \] ### Step 2: Evaluate the integral at the limits Now we evaluate the integral from 0 to \( a \): \[ = \left( a^3 + 2a^2 - 5a \right) - \left( 0^3 + 2(0^2) - 5(0) \right) \] This simplifies to: \[ = a^3 + 2a^2 - 5a \] ### Step 3: Set up the inequality We now set up the inequality based on the problem statement: \[ a^3 + 2a^2 - 5a < a^3 - 2 \] ### Step 4: Simplify the inequality Subtract \( a^3 \) from both sides: \[ 2a^2 - 5a < -2 \] Adding 2 to both sides gives: \[ 2a^2 - 5a + 2 < 0 \] ### Step 5: Factor the quadratic Next, we factor the quadratic expression: \[ 2a^2 - 5a + 2 = 0 \] To factor, we can use the middle term splitting method. We need two numbers that multiply to \( 2 \times 2 = 4 \) and add to \( -5 \). These numbers are \( -4 \) and \( -1 \): \[ 2a^2 - 4a - a + 2 < 0 \] Grouping gives: \[ 2a(a - 2) - 1(a - 2) < 0 \] Factoring out \( (a - 2) \): \[ (2a - 1)(a - 2) < 0 \] ### Step 6: Find critical points Now we find the critical points by setting each factor to zero: 1. \( 2a - 1 = 0 \) implies \( a = \frac{1}{2} \) 2. \( a - 2 = 0 \) implies \( a = 2 \) ### Step 7: Test intervals We test the intervals determined by the critical points \( \frac{1}{2} \) and \( 2 \): - For \( a < \frac{1}{2} \): Choose \( a = 0 \) → \( (2(0) - 1)(0 - 2) = (-1)(-2) = 2 > 0 \) - For \( \frac{1}{2} < a < 2 \): Choose \( a = 1 \) → \( (2(1) - 1)(1 - 2) = (1)(-1) = -1 < 0 \) - For \( a > 2 \): Choose \( a = 3 \) → \( (2(3) - 1)(3 - 2) = (5)(1) = 5 > 0 \) ### Step 8: Conclusion The inequality \( (2a - 1)(a - 2) < 0 \) holds true in the interval: \[ \frac{1}{2} < a < 2 \] Thus, the values of \( a \) for which the original inequality holds are: \[ \boxed{\left( \frac{1}{2}, 2 \right)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_0^2 3x^2 dx

int_0^2(3x^2-4)dx

The values of x for which (x-1)/(3x+4) lt (x-3)/(3x-2)

int_0^5(x^2+3x)dx =

int_0^1(2-3x+x^2)dx

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

FIND int_0^2 (x+3x^2+1/x^2)dx

The area of the region for which is int_1^3(3-2x-x^2)dx (b) int_0^3(3-2x-x^2)dx int_0^1(3-2x-x^2)dx (d) int_(-1)^3(3-2x-x^2)dx 0 0

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is

Evaluate: int_0^1(3x^2+5x)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. int(3pi//2)^(5pi//3) [2cos x]dx=

    Text Solution

    |

  2. int(0)^(50pi)| cos x|dx=

    Text Solution

    |

  3. The values of 'a' for which int0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

    Text Solution

    |

  4. If (-1,2) and and (2,4) are two points on the curve y=f(x) and if g(x)...

    Text Solution

    |

  5. If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and I(2)=int(1-x)^(x) sin{x(1-x)}...

    Text Solution

    |

  6. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  7. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  8. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  9. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  10. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  11. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  12. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  13. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  14. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  15. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  16. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  17. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  18. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  19. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  20. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |