Home
Class 12
MATHS
If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and...

If `I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx` and `I_(2)=int_(1-x)^(x) sin{x(1-x)}dx`, then

A

`I_(1)2I_(2)`

B

`2I_(1)=I_(2)`

C

`I_(1)=I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_{1-x}^{x} x \sin(x(1-x)) \, dx \] \[ I_2 = \int_{1-x}^{x} \sin(x(1-x)) \, dx \] ### Step 1: Apply the property of definite integrals We can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, we have \( a = 1 - x \) and \( b = x \). Therefore, we can rewrite \( I_1 \) as: \[ I_1 = \int_{1-x}^{x} x \sin(x(1-x)) \, dx = \int_{1-x}^{x} (1-x + x - x) \sin(x(1-x)) \, dx \] ### Step 2: Simplify the integral Using the property mentioned, we can express \( I_1 \) as: \[ I_1 = \int_{1-x}^{x} (1-x) \sin((1-x)x) \, dx \] ### Step 3: Split the integral Now we can separate the integral into two parts: \[ I_1 = \int_{1-x}^{x} (1-x) \sin((1-x)x) \, dx + \int_{1-x}^{x} x \sin((1-x)x) \, dx \] ### Step 4: Relate \( I_1 \) and \( I_2 \) Notice that the second integral is actually \( I_2 \): \[ I_2 = \int_{1-x}^{x} \sin(x(1-x)) \, dx \] Thus, we can express \( I_1 \) in terms of \( I_2 \): \[ I_1 = I_2 - I_1 \] ### Step 5: Solve for \( I_1 \) Rearranging gives us: \[ 2I_1 = I_2 \] ### Conclusion Thus, the relationship between \( I_1 \) and \( I_2 \) is: \[ I_2 = 2I_1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If f(x) =(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx , and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

Let f be a positive function. If I_1 = int_(1-k)^k x f[x(1-x)]\ dx and I_2 = int_(1-k)^k f[x(1-x)]\ dx, where 2k-1 gt 0. Then I_1/I_2 is

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

I=int(1)/(x^(2))sin[(1)/(x)]dx

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The values of 'a' for which int0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

    Text Solution

    |

  2. If (-1,2) and and (2,4) are two points on the curve y=f(x) and if g(x)...

    Text Solution

    |

  3. If I(1)=int(1-x)^(x) x sin{x(1-x)}dx and I(2)=int(1-x)^(x) sin{x(1-x)}...

    Text Solution

    |

  4. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  5. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  6. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  8. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  9. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  10. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  11. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  12. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  13. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  14. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  15. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  16. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  17. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  18. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  19. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  20. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |