Home
Class 12
MATHS
The smallest interval [a,b] such that ...

The smallest interval [a,b] such that
`int_0^(1) (1)/(sqrt(1+x^(4)))dx in [a,b]`, is

A

`[(1)/(sqrt(2)),1]`

B

[0,1]

C

`[(1)/(2),1]`

D

`[(3)/(4),1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the smallest interval \([a,b]\) such that \[ \int_0^1 \frac{1}{\sqrt{1+x^4}} \, dx \in [a,b], \] we can follow these steps: ### Step 1: Define the integral Let \[ I = \int_0^1 \frac{1}{\sqrt{1+x^4}} \, dx. \] ### Step 2: Analyze the function The function \(\frac{1}{\sqrt{1+x^4}}\) is continuous and decreasing on the interval \([0, 1]\) since as \(x\) increases, \(x^4\) increases, making the denominator larger and the whole fraction smaller. ### Step 3: Find the bounds of the function At \(x = 0\): \[ f(0) = \frac{1}{\sqrt{1+0^4}} = 1. \] At \(x = 1\): \[ f(1) = \frac{1}{\sqrt{1+1^4}} = \frac{1}{\sqrt{2}}. \] ### Step 4: Establish the inequality for the integral Since \(f(x)\) is decreasing, we can establish the following inequalities for the integral: \[ \int_0^1 f(1) \, dx < I < \int_0^1 f(0) \, dx. \] This simplifies to: \[ \frac{1}{\sqrt{2}} < I < 1. \] ### Step 5: Calculate the bounds Calculating the integrals gives: \[ \int_0^1 f(1) \, dx = \frac{1}{\sqrt{2}} \cdot (1 - 0) = \frac{1}{\sqrt{2}}, \] and \[ \int_0^1 f(0) \, dx = 1 \cdot (1 - 0) = 1. \] ### Step 6: Conclusion Thus, we have: \[ \frac{1}{\sqrt{2}} < I < 1. \] The smallest interval \([a, b]\) that contains \(I\) is: \[ \left[\frac{1}{\sqrt{2}}, 1\right]. \] ### Final Answer The smallest interval \([a,b]\) such that \(I \in [a,b]\) is: \[ \left[\frac{1}{\sqrt{2}}, 1\right]. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

int (x) /(sqrt(1+x^(4)) ) dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

Evaluate : int_0^1 1/(sqrt(2x+3))\ dx

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. If int(-pi//3)^(pi//3) ((a)/(3)|tan x|+(b tan x)/(1+sec x)+c)dx=0 wher...

    Text Solution

    |

  2. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  3. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  4. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  5. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  6. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  7. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  8. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  9. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  10. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  11. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  12. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  13. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  14. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  15. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  16. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  17. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  18. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  19. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  20. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |