Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin...

Let `I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N`. Then

A

`I_(n):I_(n-2)=n:(n-1)`

B

`I_(n) gt I_(n-2)`

C

`n(I_(n-2)-I_(n))=I_(n-2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to derive a reduction formula for the integral \( I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx \). ### Step-by-Step Solution: 1. **Start with the definition of \( I_n \)**: \[ I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx \] 2. **Use the identity for \( \sin^n x \)**: We can express \( \sin^n x \) as \( \sin^{n-1} x \cdot \sin x \): \[ I_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot \sin x \, dx \] 3. **Apply integration by parts**: Let \( u = \sin^{n-1} x \) and \( dv = \sin x \, dx \). Then, we have: \[ du = (n-1) \sin^{n-2} x \cos x \, dx \quad \text{and} \quad v = -\cos x \] Using integration by parts: \[ I_n = \left[-\sin^{n-1} x \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (n-1) \sin^{n-2} x \cos^2 x \, dx \] 4. **Evaluate the boundary terms**: At \( x = \frac{\pi}{2} \), \( \sin^{n-1} \left(\frac{\pi}{2}\right) = 1 \) and \( \cos \left(\frac{\pi}{2}\right) = 0 \), so the first term evaluates to 0. At \( x = 0 \), \( \sin^{n-1}(0) = 0 \) and \( \cos(0) = 1 \), so the term also evaluates to 0. Thus: \[ \left[-\sin^{n-1} x \cos x \right]_0^{\frac{\pi}{2}} = 0 \] 5. **Substitute back into the integral**: Now we have: \[ I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx \] 6. **Use the identity for \( \cos^2 x \)**: We know that \( \cos^2 x = 1 - \sin^2 x \): \[ I_n = (n-1) \left( \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx - \int_0^{\frac{\pi}{2}} \sin^{n} x \, dx \right) \] This can be rewritten as: \[ I_n = (n-1)(I_{n-2} - I_n) \] 7. **Rearranging the equation**: Bringing \( I_n \) terms together: \[ I_n + (n-1) I_n = (n-1) I_{n-2} \] \[ n I_n = (n-1) I_{n-2} \] 8. **Final reduction formula**: Thus, we arrive at the reduction formula: \[ I_n = \frac{(n-1)}{n} I_{n-2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let I_(n)=int_(0)^(pi//4) tan^(n)x dx . Statement-1: (1)/(n+1)lt 2I_(n) lt (1)/(n-1) for all n=2,3,4,….. Statement-2: I_(n)+I_(n-2)=(1)/(n-1) ,n=3,4,5,…...

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. Estimate the absolute value of the integral int(10)^(19)(sinx)/(1+x^8)...

    Text Solution

    |

  2. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  3. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  4. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  5. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  6. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  7. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  8. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  9. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  10. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  11. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  13. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  14. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  15. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  16. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  17. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  18. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  19. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  20. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |