Home
Class 12
MATHS
If f(x)=int(0)^(x) sin^(4)t dt, then f(x...

If f(x)`=int_(0)^(x) sin^(4)t dt`, then `f(x+2pi)` is equal to

A

f(x)

B

`f(x)+f(2pi)`

C

`gf(x)-f(2pi)`

D

`f(x).f(2pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(x + 2\pi) \) where \( f(x) = \int_0^x \sin^4 t \, dt \). ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \int_0^x \sin^4 t \, dt \] 2. **Use the periodic property of sine**: The sine function has a period of \( 2\pi \), which means: \[ \sin^4(t + 2\pi) = \sin^4 t \] Therefore, we can express \( f(x + 2\pi) \) as: \[ f(x + 2\pi) = \int_0^{x + 2\pi} \sin^4 t \, dt \] 3. **Split the integral**: We can split the integral into two parts: \[ f(x + 2\pi) = \int_0^{x} \sin^4 t \, dt + \int_{x}^{x + 2\pi} \sin^4 t \, dt \] The first part is simply \( f(x) \): \[ f(x + 2\pi) = f(x) + \int_{x}^{x + 2\pi} \sin^4 t \, dt \] 4. **Evaluate the second integral**: The integral \( \int_{x}^{x + 2\pi} \sin^4 t \, dt \) can be evaluated using the periodicity of the sine function: \[ \int_{x}^{x + 2\pi} \sin^4 t \, dt = \int_0^{2\pi} \sin^4 t \, dt \] This integral can be computed as follows: \[ \int_0^{2\pi} \sin^4 t \, dt = 2 \int_0^{\pi} \sin^4 t \, dt \] Using the reduction formula or known results, we find: \[ \int_0^{\pi} \sin^4 t \, dt = \frac{3\pi}{8} \] Thus, \[ \int_0^{2\pi} \sin^4 t \, dt = 2 \cdot \frac{3\pi}{8} = \frac{3\pi}{4} \] 5. **Combine results**: Now we can combine the results: \[ f(x + 2\pi) = f(x) + \frac{3\pi}{4} \] ### Final Result: \[ f(x + 2\pi) = f(x) + \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x(sint)/t dt ,x >0, then

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x)=int_0^x tf(t)dt+2, then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |