Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2) cos^(n)x cos nx ...

Let `I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx`. Then, `I_(n):I_(n+1)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( I_n : I_{n+1} \) where \[ I_n = \int_0^{\frac{\pi}{2}} \cos^n x \cos(nx) \, dx. \] ### Step 1: Express \( I_n \) using integration by parts Using integration by parts, we can write: \[ I_n = \int_0^{\frac{\pi}{2}} \cos^n x \cos(nx) \, dx. \] Let \( u = \cos^n x \) and \( dv = \cos(nx) \, dx \). Then, we have: \[ du = -n \cos^{n-1} x \sin x \, dx, \quad v = \frac{\sin(nx)}{n}. \] ### Step 2: Apply integration by parts Now, applying integration by parts: \[ I_n = \left[ \cos^n x \cdot \frac{\sin(nx)}{n} \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{\sin(nx)}{n} \cdot (-n \cos^{n-1} x \sin x) \, dx. \] Evaluating the boundary term: At \( x = 0 \): \( \cos^n(0) \cdot \frac{\sin(n \cdot 0)}{n} = 0 \). At \( x = \frac{\pi}{2} \): \( \cos^n\left(\frac{\pi}{2}\right) \cdot \frac{\sin(n \cdot \frac{\pi}{2})}{n} = 0 \). Thus, the boundary term evaluates to zero: \[ I_n = 0 + \int_0^{\frac{\pi}{2}} \sin(nx) \cos^{n-1} x \sin x \, dx. \] ### Step 3: Simplify the integral Now, we can simplify the integral: \[ I_n = \int_0^{\frac{\pi}{2}} \sin(nx) \cos^{n-1} x \sin x \, dx. \] Using the identity \( \sin x = \frac{1}{2}(\sin(2x)) \): \[ I_n = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(nx) \cos^{n-1} x \sin(2x) \, dx. \] ### Step 4: Relate \( I_n \) and \( I_{n+1} \) We can express \( I_{n+1} \) similarly: \[ I_{n+1} = \int_0^{\frac{\pi}{2}} \cos^{n+1} x \cos(nx) \, dx. \] Using the same integration by parts technique, we can find a relationship between \( I_n \) and \( I_{n+1} \): \[ I_n = \frac{1}{n+1} I_{n+1}. \] ### Step 5: Find the ratio \( I_n : I_{n+1} \) From the relationship derived above, we can express the ratio: \[ \frac{I_n}{I_{n+1}} = \frac{1}{n+1}. \] ### Conclusion Thus, the ratio \( I_n : I_{n+1} \) is: \[ I_n : I_{n+1} = 2 : 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |