Home
Class 12
MATHS
The value of int(-1)^(1) max[2-x,2,1+x] ...

The value of `int_(-1)^(1) max[2-x,2,1+x]` dx is

A

4

B

`9//2`

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} \max[2-x, 2, 1+x] \, dx \), we will break it down step by step. ### Step 1: Identify the intervals We need to evaluate the maximum of the three functions \( 2-x \), \( 2 \), and \( 1+x \) over the interval from \(-1\) to \(1\). We can break this interval into two parts: from \(-1\) to \(0\) and from \(0\) to \(1\). ### Step 2: Analyze the interval \([-1, 0]\) - For \( x = -1 \): - \( 2 - (-1) = 3 \) - \( 2 = 2 \) - \( 1 + (-1) = 0 \) The maximum value is \( 3 \) (from \( 2 - x \)). - For \( x = 0 \): - \( 2 - 0 = 2 \) - \( 2 = 2 \) - \( 1 + 0 = 1 \) The maximum value is \( 2 \) (from \( 2 \)). Since \( 2-x \) is a decreasing function and \( 1+x \) is an increasing function, we can conclude that in the interval \([-1, 0]\), the maximum function is \( 2 - x \). ### Step 3: Analyze the interval \([0, 1]\) - For \( x = 0 \): - \( 2 - 0 = 2 \) - \( 2 = 2 \) - \( 1 + 0 = 1 \) The maximum value is \( 2 \) (from \( 2 \)). - For \( x = 1 \): - \( 2 - 1 = 1 \) - \( 2 = 2 \) - \( 1 + 1 = 2 \) The maximum value is \( 2 \) (from \( 2 \)). In this interval, the maximum function is also \( 2 \). ### Step 4: Set up the integral Now we can set up the integral as follows: \[ \int_{-1}^{1} \max[2-x, 2, 1+x] \, dx = \int_{-1}^{0} (2-x) \, dx + \int_{0}^{1} 2 \, dx \] ### Step 5: Calculate the integrals 1. Calculate \( \int_{-1}^{0} (2-x) \, dx \): \[ \int (2-x) \, dx = 2x - \frac{x^2}{2} \] Evaluating from \(-1\) to \(0\): \[ \left[ 2(0) - \frac{0^2}{2} \right] - \left[ 2(-1) - \frac{(-1)^2}{2} \right] = 0 - \left[ -2 - \frac{1}{2} \right] = 0 + 2 + \frac{1}{2} = \frac{5}{2} \] 2. Calculate \( \int_{0}^{1} 2 \, dx \): \[ \int 2 \, dx = 2x \] Evaluating from \(0\) to \(1\): \[ 2(1) - 2(0) = 2 \] ### Step 6: Combine the results Now we combine the results of the two integrals: \[ \int_{-1}^{1} \max[2-x, 2, 1+x] \, dx = \frac{5}{2} + 2 = \frac{5}{2} + \frac{4}{2} = \frac{9}{2} \] ### Final Answer Thus, the value of the integral is: \[ \frac{9}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) (1)/(2x-3)dx is

int_(-1)^(1)e^(2x)dx

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

The value of int_(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int_(-1)^(1) cos^(-1)[x^(2)-(1)/(2)]dx , where [.] denotes the greatest integer function , is

Find the value of int_(1/2)^(2)e^(|x-1/x|)dx .

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

The value of int_(-2)^2|1-x^2|dx is_______

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |