Home
Class 12
MATHS
The value of the integral int(-1)^(1) (x...

The value of the integral `int_(-1)^(1) (x-[2x])`dx,is

A

1

B

0

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} (x - [2x]) \, dx \), where \([2x]\) denotes the greatest integer function, we will break down the integral into manageable parts based on the behavior of the greatest integer function. ### Step 1: Split the Integral We can separate the integral into two parts: \[ I = \int_{-1}^{1} x \, dx - \int_{-1}^{1} [2x] \, dx \] ### Step 2: Calculate the First Integral The first integral is straightforward: \[ \int_{-1}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{-1}^{1} = \frac{1^2}{2} - \frac{(-1)^2}{2} = \frac{1}{2} - \frac{1}{2} = 0 \] ### Step 3: Analyze the Second Integral Next, we need to evaluate \( \int_{-1}^{1} [2x] \, dx \). The function \([2x]\) changes its value at certain points in the interval \([-1, 1]\). 1. For \( x \in [-1, -0.5) \): - \( 2x \in [-2, -1) \) - \([2x] = -2\) 2. For \( x \in [-0.5, 0) \): - \( 2x \in [-1, 0) \) - \([2x] = -1\) 3. For \( x \in [0, 0.5) \): - \( 2x \in [0, 1) \) - \([2x] = 0\) 4. For \( x \in [0.5, 1] \): - \( 2x \in [1, 2] \) - \([2x] = 1\) ### Step 4: Break Down the Integral Now we can break down the integral \( \int_{-1}^{1} [2x] \, dx \) into four parts: \[ \int_{-1}^{-0.5} -2 \, dx + \int_{-0.5}^{0} -1 \, dx + \int_{0}^{0.5} 0 \, dx + \int_{0.5}^{1} 1 \, dx \] ### Step 5: Calculate Each Part 1. \( \int_{-1}^{-0.5} -2 \, dx = -2 \left[ x \right]_{-1}^{-0.5} = -2 \left( -0.5 + 1 \right) = -2 \cdot 0.5 = -1 \) 2. \( \int_{-0.5}^{0} -1 \, dx = -1 \left[ x \right]_{-0.5}^{0} = -1 \left( 0 + 0.5 \right) = -0.5 \) 3. \( \int_{0}^{0.5} 0 \, dx = 0 \) 4. \( \int_{0.5}^{1} 1 \, dx = \left[ x \right]_{0.5}^{1} = 1 - 0.5 = 0.5 \) ### Step 6: Combine the Results Now, we can combine the results of the second integral: \[ \int_{-1}^{1} [2x] \, dx = -1 - 0.5 + 0 + 0.5 = -1 \] ### Step 7: Final Calculation Now we can substitute this back into our expression for \( I \): \[ I = 0 - (-1) = 1 \] ### Conclusion Thus, the value of the integral \( \int_{-1}^{1} (x - [2x]) \, dx \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(-1)^(1) sin^(11)x" dx" is

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |