Home
Class 12
MATHS
Let f:R in R be a continuous function su...

Let `f:R in R` be a continuous function such that f(1)=2. If `lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4`, then the value of f'(1) is

A

1

B

2

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given limit involving an integral. ### Step 1: Set up the integral We are given: \[ \lim_{x \to 1} \int_{2}^{f(x)} \frac{2t}{x-1} dt = 4 \] We can rewrite the integral by factoring out \(\frac{1}{x-1}\): \[ \int_{2}^{f(x)} \frac{2t}{x-1} dt = \frac{1}{x-1} \int_{2}^{f(x)} 2t \, dt \] ### Step 2: Evaluate the integral Now, we need to evaluate the integral \(\int_{2}^{f(x)} 2t \, dt\): \[ \int 2t \, dt = t^2 + C \] Thus, \[ \int_{2}^{f(x)} 2t \, dt = \left[ t^2 \right]_{2}^{f(x)} = f(x)^2 - 2^2 = f(x)^2 - 4 \] ### Step 3: Substitute back into the limit Substituting this back into our limit gives: \[ \lim_{x \to 1} \frac{f(x)^2 - 4}{x - 1} = 4 \] ### Step 4: Apply L'Hôpital's Rule As \(x \to 1\), both the numerator and denominator approach 0, resulting in a \(0/0\) form. We can apply L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{f(x)^2 - 4}{x - 1} = \lim_{x \to 1} \frac{d}{dx}(f(x)^2 - 4) \bigg/ \frac{d}{dx}(x - 1) \] Differentiating the numerator: \[ \frac{d}{dx}(f(x)^2 - 4) = 2f(x)f'(x) \] And the denominator: \[ \frac{d}{dx}(x - 1) = 1 \] Thus, we have: \[ \lim_{x \to 1} 2f(x)f'(x) = 4 \] ### Step 5: Substitute \(f(1)\) We know \(f(1) = 2\): \[ 2 \cdot 2 \cdot f'(1) = 4 \] This simplifies to: \[ 4f'(1) = 4 \] ### Step 6: Solve for \(f'(1)\) Dividing both sides by 4 gives: \[ f'(1) = 1 \] ### Final Answer The value of \(f'(1)\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f: (-2, 2) rarr (-2, 2) be a continuous function such that f(x) = f(x^2) AA Χin d_f, and f(0) = 1/2 , then the value of 4f(1/4) is equal to

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

If f : R to R is different function and f(2) = 6, then lim_(x to 2) int_(6)^f(x) (2t dt)/(x - 2) is

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |