Home
Class 12
MATHS
Let f:R in R be a continuous function su...

Let `f:R in R` be a continuous function such that f(x) is not identically equal to zero. If `int_(0)^(x) |x-2|dx,x ge 0`. Then, f'(x) is

A

an even function

B

an odd function

C

a periodic function

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(x) \) of the function defined by the integral \[ f(x) = \int_{0}^{x} |x - 2| \, dx, \quad x \geq 0. \] ### Step 1: Analyze the integrand The integrand \( |x - 2| \) is a piecewise function. We need to determine how it behaves over the interval \( [0, x] \): - For \( x < 2 \), \( |x - 2| = 2 - x \). - For \( x \geq 2 \), \( |x - 2| = x - 2 \). ### Step 2: Define the function piecewise Thus, we can define \( f(x) \) piecewise: 1. **For \( 0 \leq x < 2 \)**: \[ f(x) = \int_{0}^{x} (2 - t) \, dt \] 2. **For \( x \geq 2 \)**: \[ f(x) = \int_{0}^{2} (2 - t) \, dt + \int_{2}^{x} (t - 2) \, dt \] ### Step 3: Calculate the integrals **For \( 0 \leq x < 2 \)**: \[ f(x) = \int_{0}^{x} (2 - t) \, dt = [2t - \frac{t^2}{2}]_{0}^{x} = 2x - \frac{x^2}{2} \] **For \( x \geq 2 \)**: First, calculate the integral from 0 to 2: \[ \int_{0}^{2} (2 - t) \, dt = [2t - \frac{t^2}{2}]_{0}^{2} = 4 - 2 = 2 \] Now calculate the integral from 2 to \( x \): \[ \int_{2}^{x} (t - 2) \, dt = \left[\frac{t^2}{2} - 2t\right]_{2}^{x} = \left(\frac{x^2}{2} - 2x\right) - \left(\frac{2^2}{2} - 2 \cdot 2\right) = \frac{x^2}{2} - 2x + 2 \] Combining these results for \( x \geq 2 \): \[ f(x) = 2 + \left(\frac{x^2}{2} - 2x + 2\right) = \frac{x^2}{2} - 2x + 4 \] ### Step 4: Find the derivative \( f'(x) \) Now we can find \( f'(x) \) for both cases: 1. **For \( 0 \leq x < 2 \)**: \[ f'(x) = \frac{d}{dx}\left(2x - \frac{x^2}{2}\right) = 2 - x \] 2. **For \( x \geq 2 \)**: \[ f'(x) = \frac{d}{dx}\left(\frac{x^2}{2} - 2x + 4\right) = x - 2 \] ### Step 5: Combine results Thus, we have: \[ f'(x) = \begin{cases} 2 - x & \text{if } 0 \leq x < 2 \\ x - 2 & \text{if } x \geq 2 \end{cases} \] ### Final Answer The derivative \( f'(x) \) is given by: \[ f'(x) = \begin{cases} 2 - x & \text{if } 0 \leq x < 2 \\ x - 2 & \text{if } x \geq 2 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =int_(0)^(x) |xx-2|dx, ge 0 . Then, f'(x) is

Let f:R rarr R be a continuous function such that f(x)-2f(x/2)+f(x/4)=x^(2) . f(3) is equal to

Let f:R rarr R be a continuous function such that f(x)-2f(x/2)+f(x/4)=x^(2) . f'(0) is equal to

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x/7 AA x in R, then f(42) is

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |