Home
Class 12
MATHS
Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Th...

Let f(x)`=int_(0)^(x) |xx-2|dx, ge 0`. Then, f'(x) is

A

continuous and non differentiable at x=2

B

discontinuous at x=4

C

neither continuous nor differentiable at x=2

D

non-differentiable at x=4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f'(x) \) for the function defined as: \[ f(x) = \int_{0}^{x} |x - 2| \, dx \] ### Step 1: Analyze the function inside the integral The expression \( |x - 2| \) can be rewritten based on the value of \( x \): - For \( x < 2 \), \( |x - 2| = 2 - x \) - For \( x \geq 2 \), \( |x - 2| = x - 2 \) ### Step 2: Define \( f(x) \) piecewise We can express \( f(x) \) as a piecewise function: \[ f(x) = \begin{cases} \int_{0}^{x} (2 - x) \, dx & \text{if } x < 2 \\ \int_{0}^{x} (x - 2) \, dx & \text{if } x \geq 2 \end{cases} \] ### Step 3: Calculate \( f(x) \) for each case **Case 1: \( x < 2 \)** \[ f(x) = \int_{0}^{x} (2 - t) \, dt = \left[ 2t - \frac{t^2}{2} \right]_{0}^{x} = 2x - \frac{x^2}{2} \] **Case 2: \( x \geq 2 \)** \[ f(x) = \int_{0}^{x} (t - 2) \, dt = \left[ \frac{t^2}{2} - 2t \right]_{0}^{x} = \frac{x^2}{2} - 2x \] ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \) for both cases: **For \( x < 2 \):** \[ f'(x) = \frac{d}{dx} \left( 2x - \frac{x^2}{2} \right) = 2 - x \] **For \( x \geq 2 \):** \[ f'(x) = \frac{d}{dx} \left( \frac{x^2}{2} - 2x \right) = x - 2 \] ### Step 5: Evaluate \( f'(x) \) at \( x = 2 \) To check the differentiability at \( x = 2 \), we need to find the left-hand and right-hand derivatives: - **Left-hand derivative** as \( x \to 2^- \): \[ f'(2^-) = 2 - 2 = 0 \] - **Right-hand derivative** as \( x \to 2^+ \): \[ f'(2^+) = 2 - 2 = 0 \] ### Step 6: Conclusion Since both left-hand and right-hand derivatives at \( x = 2 \) are equal, \( f'(2) = 0 \). Therefore, the function \( f'(x) \) is defined as: \[ f'(x) = \begin{cases} 2 - x & \text{if } x < 2 \\ x - 2 & \text{if } x \geq 2 \end{cases} \] ### Final Answer Thus, \( f'(x) \) is given by: \[ f'(x) = \begin{cases} 2 - x & \text{if } x < 2 \\ x - 2 & \text{if } x \geq 2 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f:R in R be a continuous function such that f(x) is not identically equal to zero. If int_(0)^(x) |x-2|dx,x ge 0 . Then, f'(x) is

int_(0)^(a)f(x)dx

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Let f(a,b) = int_(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The number of solution(s) of the equation |x^(2)+x-6|=f(x)+g(x) is/are

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The total number of root(s) of the equation f(x)=g(x) is/ are

Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The solution set of inequation g(x)(cos^(-1)x-sin^(-1)) le0

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

Statement-1: int_(0)^(npi+v)|sin x|dx=2n+1-cos v where n in N and 0 le v lt pi . Stetement-2: If f(x) is a periodic function with period T, then (i) int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx , where n in N and (ii) int_(nT)^(nT+a) f(x)dx=int_(0)^(a) f(x) dx , where n in N

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |