Home
Class 12
MATHS
Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, i...

`Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0`, is equal to (A) `k/e` (B) `e/k` (C) `1/(ke)` (D) none of these

A

ke

B

`(e )/(k)`

C

`(k)/(e )`

D

`(1)/(ke)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{n \to \infty} \left( \frac{n!}{k n^n} \right)^{\frac{1}{n}} \), where \( k \neq 0 \), we can follow these steps: ### Step 1: Rewrite the limit Let \( L = \lim_{n \to \infty} \left( \frac{n!}{k n^n} \right)^{\frac{1}{n}} \). ### Step 2: Take the natural logarithm Taking the logarithm of both sides, we get: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \log \left( \frac{n!}{k n^n} \right) \] This can be simplified to: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \log(n!) - \log(k) - n \log(n) \right) \] ### Step 3: Use Stirling's approximation Using Stirling's approximation, we know that: \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] Thus, \[ \log(n!) \sim \frac{1}{2} \log(2 \pi n) + n \log(n) - n \] Substituting this into our expression for \( \log L \): \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \left( \frac{1}{2} \log(2 \pi n) + n \log(n) - n \right) - \log(k) - n \log(n) \right) \] ### Step 4: Simplify the expression This simplifies to: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \frac{1}{2} \log(2 \pi n) - n - \log(k) \right) \] Breaking it down: \[ \log L = \lim_{n \to \infty} \left( \frac{1}{2n} \log(2 \pi n) - 1 - \frac{\log(k)}{n} \right) \] ### Step 5: Evaluate the limit As \( n \to \infty \), \( \frac{1}{2n} \log(2 \pi n) \to 0 \) and \( \frac{\log(k)}{n} \to 0 \). Thus: \[ \log L = 0 - 1 + 0 = -1 \] Therefore, we have: \[ L = e^{-1} = \frac{1}{e} \] ### Conclusion Thus, the limit is: \[ L = \frac{1}{e} \] The final answer is \( \frac{1}{ke} \). ### Final Answer The correct option is (C) \( \frac{1}{ke} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Lt_(nrarroo) sum_(r=1)^n (2r)^k/n^(k+1),k!=-1 , is equal to (A) 2^k/(k-1) (B) 2^k/k (C) 1/(k+1) (D) 2^k/(k+1)

lim_(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

Lt_(nrarroo)((n!)/n^n)^(1/n)= (A) e^(-2) (B) e^(-1) (C) e^3 (D) e

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

If A=[a_(i j)] is a scalar matrix of order nxxn such that a_(i i)=k for all i , then trace of A is equal to n k (b) n+k (c) n/k (d) none of these

If n in N and int_0^1 e^x(x-1)^ndx=2e-5 , then n= (A) 1 (B) 2 (C) 3 (D) none of these

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

If int_0^1 xe^(x^2) dx=k int_0^1 e^(x^2) dx , then (A) kgt1 (B) 0ltklt1 (C) k=1 (D) none of these

lim_(nrarroo) sum_(r=1)^n 1/n e^(r/n) is (A) 1-e (B) e-1 (C) e (D) e+1

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |