Home
Class 12
MATHS
If I(n)=int(0)^(pi//2) x^(n) sin x dx, t...

If `I_(n)=int_(0)^(pi//2) x^(n) sin x dx`, then `I_(4)+12I_(2)` is equal to\

A

`4pi`

B

`3((pi)/(2))^(3)`

C

`((pi)/(2))^(2)`

D

`4((pi)/(2))^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_4 + 12I_2 \) where \( I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx \). ### Step 1: Calculate \( I_4 \) We start with: \[ I_4 = \int_0^{\frac{\pi}{2}} x^4 \sin x \, dx \] Using integration by parts, we let: - \( u = x^4 \) (first function) - \( dv = \sin x \, dx \) (second function) Then, we differentiate and integrate: - \( du = 4x^3 \, dx \) - \( v = -\cos x \) Applying integration by parts: \[ I_4 = \left[ -x^4 \cos x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\cos x \cdot 4x^3 \, dx \] ### Step 2: Evaluate the boundary term Calculating the boundary term: \[ \left[ -x^4 \cos x \right]_0^{\frac{\pi}{2}} = -\left( -\frac{\pi^4}{16} \cdot 0 \right) - \left( -0^4 \cdot 1 \right) = 0 \] So we have: \[ I_4 = 0 + 4 \int_0^{\frac{\pi}{2}} x^3 \cos x \, dx \] ### Step 3: Calculate \( \int_0^{\frac{\pi}{2}} x^3 \cos x \, dx \) Now we need to evaluate: \[ \int_0^{\frac{\pi}{2}} x^3 \cos x \, dx \] Again using integration by parts: - Let \( u = x^3 \) and \( dv = \cos x \, dx \) - Then \( du = 3x^2 \, dx \) and \( v = \sin x \) Applying integration by parts: \[ \int_0^{\frac{\pi}{2}} x^3 \cos x \, dx = \left[ x^3 \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 3x^2 \sin x \, dx \] ### Step 4: Evaluate the boundary term again Calculating the boundary term: \[ \left[ x^3 \sin x \right]_0^{\frac{\pi}{2}} = \left( \frac{\pi^3}{8} \cdot 1 \right) - (0 \cdot 0) = \frac{\pi^3}{8} \] So we have: \[ \int_0^{\frac{\pi}{2}} x^3 \cos x \, dx = \frac{\pi^3}{8} - 3 \int_0^{\frac{\pi}{2}} x^2 \sin x \, dx \] ### Step 5: Calculate \( I_2 \) Next, we need to calculate \( I_2 = \int_0^{\frac{\pi}{2}} x^2 \sin x \, dx \) using integration by parts: - Let \( u = x^2 \) and \( dv = \sin x \, dx \) - Then \( du = 2x \, dx \) and \( v = -\cos x \) Applying integration by parts: \[ I_2 = \left[ -x^2 \cos x \right]_0^{\frac{\pi}{2}} + 2 \int_0^{\frac{\pi}{2}} x \cos x \, dx \] ### Step 6: Evaluate the boundary term for \( I_2 \) Calculating the boundary term: \[ \left[ -x^2 \cos x \right]_0^{\frac{\pi}{2}} = 0 \] So we have: \[ I_2 = 2 \int_0^{\frac{\pi}{2}} x \cos x \, dx \] ### Step 7: Calculate \( \int_0^{\frac{\pi}{2}} x \cos x \, dx \) Using integration by parts again: - Let \( u = x \) and \( dv = \cos x \, dx \) - Then \( du = dx \) and \( v = \sin x \) Applying integration by parts: \[ \int_0^{\frac{\pi}{2}} x \cos x \, dx = \left[ x \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \, dx \] Calculating the boundary term: \[ \left[ x \sin x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \cdot 1 - 0 = \frac{\pi}{2} \] So we have: \[ \int_0^{\frac{\pi}{2}} x \cos x \, dx = \frac{\pi}{2} - 1 \] ### Step 8: Substitute back to find \( I_2 \) Now substituting back: \[ I_2 = 2 \left( \frac{\pi}{2} - 1 \right) = \pi - 2 \] ### Step 9: Substitute \( I_2 \) back to find \( I_4 \) Now substituting \( I_2 \) back into the expression for \( I_4 \): \[ I_4 = 4 \left( \frac{\pi^3}{8} - 3(\pi - 2) \right) \] ### Step 10: Calculate \( I_4 + 12I_2 \) Finally, we can calculate \( I_4 + 12I_2 \): \[ I_4 + 12I_2 = 4 \left( \frac{\pi^3}{8} - 3(\pi - 2) \right) + 12(\pi - 2) \] After simplifying, we find: \[ I_4 + 12I_2 = \frac{\pi^3}{2} - 12\pi + 48 \] ### Final Result Thus, the final answer is: \[ I_4 + 12I_2 = 4 \cdot \frac{\pi^3}{8} + 12(\pi - 2) = \frac{\pi^3}{2} + 12\pi - 24 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |