Home
Class 12
MATHS
int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x...

`int_(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=`

A

`pi//6`

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \sin\left(2 \tan^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right) dx, \] we can use a known identity for \(2 \tan^{-1}(y)\): \[ 2 \tan^{-1}(y) = \sin^{-1}\left(\frac{2y}{1+y^2}\right). \] ### Step 1: Substitute \(y\) Let \(y = \sqrt{\frac{1+x}{1-x}}\). Then, we can express \(2 \tan^{-1}(y)\) in terms of \(\sin^{-1}\): \[ 2 \tan^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right) = \sin^{-1}\left(\frac{2\sqrt{\frac{1+x}{1-x}}}{1+\left(\sqrt{\frac{1+x}{1-x}}\right)^2}\right). \] ### Step 2: Simplify the expression Calculating \(1 + \left(\sqrt{\frac{1+x}{1-x}}\right)^2\): \[ 1 + \frac{1+x}{1-x} = \frac{(1-x) + (1+x)}{1-x} = \frac{2}{1-x}. \] Thus, we have: \[ \frac{2\sqrt{\frac{1+x}{1-x}}}{1+\left(\sqrt{\frac{1+x}{1-x}}\right)^2} = \frac{2\sqrt{\frac{1+x}{1-x}}}{\frac{2}{1-x}} = \sqrt{\frac{1+x}{1-x}}(1-x) = \frac{2(1+x)}{1-x}. \] ### Step 3: Substitute back into the integral Now, substituting this back into the integral, we get: \[ I = \int_0^1 \sin\left(\sin^{-1}\left(\frac{2\sqrt{\frac{1+x}{1-x}}}{1+\left(\sqrt{\frac{1+x}{1-x}}\right)^2}\right)\right) dx. \] Using the property \(\sin(\sin^{-1}(z)) = z\), we can simplify: \[ I = \int_0^1 \frac{2\sqrt{\frac{1+x}{1-x}}}{1+\left(\sqrt{\frac{1+x}{1-x}}\right)^2} dx. \] ### Step 4: Change of variables To simplify the integral, we can use the substitution \(x = \sin^2(\theta)\), which gives \(dx = 2\sin(\theta)\cos(\theta) d\theta\) and changes the limits from \(0\) to \(\frac{\pi}{2}\): \[ I = \int_0^{\frac{\pi}{2}} \sin\left(2\theta\right) d\theta. \] ### Step 5: Evaluate the integral Using the integral of \(\sin(2\theta)\): \[ \int \sin(2\theta) d\theta = -\frac{1}{2} \cos(2\theta), \] we evaluate from \(0\) to \(\frac{\pi}{2}\): \[ I = \left[-\frac{1}{2} \cos(2\theta)\right]_0^{\frac{\pi}{2}} = -\frac{1}{2}(\cos(\pi) - \cos(0)) = -\frac{1}{2}(-1 - 1) = \frac{1}{2}(2) = 1. \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi}{4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int tan^-1(sqrt((1-x)/(1+x)) dx

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 1
  1. The smallest interval [a,b] such that int0^(1) (1)/(sqrt(1+x^(4)))dx...

    Text Solution

    |

  2. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  3. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  4. int(0)^(pi)(dx)/(1+3^(cos x)) is equal to:

    Text Solution

    |

  5. Let int(0)^(a)f(x)dx = lambda and int(0)^(a)f(2a-x)dx=mu. Then int(0)^...

    Text Solution

    |

  6. Evaluate : int((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

    Text Solution

    |

  7. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  8. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  9. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  10. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  12. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  13. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  14. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x), f(0)=1 and g be a functi...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y),g(y)=y,ygt0 and F(t)=int(0)^(1)f(t-y)g(y)dt then

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |