Home
Class 12
MATHS
The maximum value of the function f(x) g...

The maximum value of the function f(x) given by
`f(x)=x(x-1)^2,0ltxlt2` , is

A

0

B

`4//27`

C

-4

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = x(x-1)^2 \) in the interval \( 0 < x < 2 \), we will follow these steps: ### Step 1: Find the derivative of the function To find the critical points, we first need to differentiate the function \( f(x) \). \[ f(x) = x(x-1)^2 \] Using the product rule, where \( u = x \) and \( v = (x-1)^2 \): \[ f'(x) = u'v + uv' \] Calculating \( u' \) and \( v' \): \[ u' = 1 \] \[ v = (x-1)^2 \quad \Rightarrow \quad v' = 2(x-1) \] Now applying the product rule: \[ f'(x) = 1 \cdot (x-1)^2 + x \cdot 2(x-1) \] \[ = (x-1)^2 + 2x(x-1) \] \[ = (x-1)^2 + 2x^2 - 2x \] \[ = (x-1)^2 + 2x^2 - 2x \] \[ = x^2 - 2x + 1 + 2x^2 - 2x \] \[ = 3x^2 - 4x + 1 \] ### Step 2: Set the derivative to zero Now we set the derivative equal to zero to find the critical points: \[ 3x^2 - 4x + 1 = 0 \] ### Step 3: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3 \), \( b = -4 \), and \( c = 1 \). \[ x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} \] \[ = \frac{4 \pm \sqrt{16 - 12}}{6} \] \[ = \frac{4 \pm \sqrt{4}}{6} \] \[ = \frac{4 \pm 2}{6} \] Calculating the two possible values: 1. \( x = \frac{6}{6} = 1 \) 2. \( x = \frac{2}{6} = \frac{1}{3} \) ### Step 4: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical points \( x = 1 \) and \( x = \frac{1}{3} \), as well as the endpoints of the interval \( x = 0 \) and \( x = 2 \). 1. \( f(0) = 0(0-1)^2 = 0 \) 2. \( f(1) = 1(1-1)^2 = 0 \) 3. \( f\left(\frac{1}{3}\right) = \frac{1}{3}\left(\frac{1}{3} - 1\right)^2 = \frac{1}{3}\left(-\frac{2}{3}\right)^2 = \frac{1}{3} \cdot \frac{4}{9} = \frac{4}{27} \) 4. \( f(2) = 2(2-1)^2 = 2(1)^2 = 2 \) ### Step 5: Determine the maximum value Now we compare the values: - \( f(0) = 0 \) - \( f(1) = 0 \) - \( f\left(\frac{1}{3}\right) = \frac{4}{27} \) - \( f(2) = 2 \) The maximum value of \( f(x) \) in the interval \( 0 < x < 2 \) is: \[ \text{Maximum value} = 2 \] ### Final Answer The maximum value of the function \( f(x) = x(x-1)^2 \) for \( 0 < x < 2 \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|47 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and the minimum values, if any, of the function f given by f(x)=x^2,x in R .

Find the maximum and minimum values of any of the function f given by f(x)=x^(4) , x in R .

The function f (x) given by f(x) =sin^(-1)((2x)/(1+x^2)) is

The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

The domain of the function f given by f(x)=(x^(2)+2x+1)/(x^(2)-x-6)

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,pi]

Find the maximum and the minimum values, if any, of the function given by f(x)=x ,x in (0,1)

Find the maximum and minimum value if any , of the function f given by f(x)=5-|x-1| .

If 0lexle(pi)/(2) , what is the maximum value of the function f(x)="sin"(1)/(3)x ?

OBJECTIVE RD SHARMA ENGLISH-MAXIMA AND MINIMA -Chapter Test
  1. The function y=(ax+b)/(x-1)(x-4) has turning point at P(2,-1) Then fin...

    Text Solution

    |

  2. Find the least value of the expressions 2log(10)x-log(x)0.01, where xg...

    Text Solution

    |

  3. The maximum value of the function f(x) given by f(x)=x(x-1)^2,0ltxlt...

    Text Solution

    |

  4. The least value of a for which the equation 4/(sinx)+1/(1-sinx)=a has ...

    Text Solution

    |

  5. The minimum value of f(x)=e^((x^4-x^3+x^2)) is

    Text Solution

    |

  6. Let f(x)=a/x+x^2dot If it has a maximum at x=-3, then find the value o...

    Text Solution

    |

  7. Find the maximum value of 4sin^(2)x+3cos^(2)x+sin""(x)/(2)+cos""(x)/(2...

    Text Solution

    |

  8. The least value of the f(x) given by f(x)=tan^(-1)x-1/2 logex " in t...

    Text Solution

    |

  9. The slope of the tangent to the curve y=e^x cosx is minimum at x= a,0 ...

    Text Solution

    |

  10. The value of a for which the function f(x)={{:(tan^(-1)a -3x^2" , " ...

    Text Solution

    |

  11. The minimum value of 27^(cos3x)81^(sin3x) is

    Text Solution

    |

  12. If f(x)=(x^2-1)/(x^2+1) . For every real number x , then the minimum v...

    Text Solution

    |

  13. f(x) = |x|+|x-1| +|x-2|, then which one of the following is not correc...

    Text Solution

    |

  14. Write the maximum value of f(x)=(logx)/x , if it exists.

    Text Solution

    |

  15. The function f(x)=2x^(3)-3x^(2)-12x-4 has

    Text Solution

    |

  16. In (-4,4) the function f(x)=int(-10)^x (t^2-4)e^(-4t) dt , has

    Text Solution

    |

  17. On [1,e] the greatest value of x^2logex, is

    Text Solution

    |

  18. If f(x)=(x^2-1)/(x^2+1) . For every real number x , then the minimum v...

    Text Solution

    |

  19. If f:R to R be defined by f(x) =2x + cosx, then f

    Text Solution

    |

  20. The maximum distance from origin of a point on the curve x=asint-bsin(...

    Text Solution

    |