Home
Class 12
MATHS
If n is an odd integer, then (1 + i)^...

If n is an odd integer, then ` (1 + i)^(6n) + (1-i)^(6n)` is equal to

A

0

B

2

C

`-2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( (1 + i)^{6n} + (1 - i)^{6n} \) where \( n \) is an odd integer. ### Step-by-Step Solution: 1. **Rewrite the expression**: \[ (1 + i)^{6n} + (1 - i)^{6n} \] 2. **Convert to polar form**: The complex numbers \( 1 + i \) and \( 1 - i \) can be expressed in polar form. The modulus and argument of \( 1 + i \) are: - Modulus: \( |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \) - Argument: \( \arg(1 + i) = \tan^{-1}(1) = \frac{\pi}{4} \) Thus, \[ 1 + i = \sqrt{2} \left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) \] Similarly for \( 1 - i \): - Modulus: \( |1 - i| = \sqrt{2} \) - Argument: \( \arg(1 - i) = \tan^{-1}(-1) = -\frac{\pi}{4} \) Thus, \[ 1 - i = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right) \] 3. **Raise to the power \( 6n \)**: Using De Moivre's theorem: \[ (1 + i)^{6n} = (\sqrt{2})^{6n} \left( \cos\left(6n \cdot \frac{\pi}{4}\right) + i\sin\left(6n \cdot \frac{\pi}{4}\right) \right) \] \[ (1 - i)^{6n} = (\sqrt{2})^{6n} \left( \cos\left(6n \cdot \left(-\frac{\pi}{4}\right)\right) + i\sin\left(6n \cdot \left(-\frac{\pi}{4}\right)\right) \right) \] 4. **Combine the two expressions**: Since \( (\sqrt{2})^{6n} = 2^{3n} \), we can write: \[ (1 + i)^{6n} + (1 - i)^{6n} = 2^{3n} \left( \cos\left(6n \cdot \frac{\pi}{4}\right) + i\sin\left(6n \cdot \frac{\pi}{4}\right) + \cos\left(-6n \cdot \frac{\pi}{4}\right) + i\sin\left(-6n \cdot \frac{\pi}{4}\right) \right) \] The sine terms cancel out: \[ = 2^{3n} \left( 2\cos\left(6n \cdot \frac{\pi}{4}\right) \right) \] 5. **Evaluate the cosine term**: Since \( n \) is odd, \( 6n \) is also odd, and: \[ 6n \cdot \frac{\pi}{4} = \frac{3n\pi}{2} \] The cosine of \( \frac{3n\pi}{2} \) is \( 0 \) for odd \( n \). 6. **Final result**: Thus, \[ (1 + i)^{6n} + (1 - i)^{6n} = 2^{3n} \cdot 2 \cdot 0 = 0 \] ### Conclusion: The final result is: \[ (1 + i)^{6n} + (1 - i)^{6n} = 0 \]

To solve the problem, we need to evaluate the expression \( (1 + i)^{6n} + (1 - i)^{6n} \) where \( n \) is an odd integer. ### Step-by-Step Solution: 1. **Rewrite the expression**: \[ (1 + i)^{6n} + (1 - i)^{6n} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

The last positive integer n for which ((1+i)/(1-i))^(n) is real, is

Let I_n=int tan^n x dx, (n>1) . If I_4+I_6=a tan^5 x + bx^5 + C , Where C is a constant of integration, then the ordered pair (a,b) is equal to :

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If n is an odd integer, then (1 + i)^(6n) + (1-i)^(6n) is equal to

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |