Home
Class 12
MATHS
The value of i^2 + i^4 + i^6 + i^8....up...

The value of `i^2 + i^4 + i^6 + i^8....`upto (2n+1) terms , where `i^2` = -1, is equal to:

A

`-1`

B

1

C

`-i`

D

i

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( i^2 + i^4 + i^6 + i^8 + \ldots \) up to \( (2n + 1) \) terms, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Series**: The series given is \( i^2 + i^4 + i^6 + i^8 + \ldots \) up to \( (2n + 1) \) terms. 2. **Recognize the Pattern**: We can express the terms in the series as: \[ i^2, i^4, i^6, \ldots, i^{2(2n+1)} \] This can be rewritten as: \[ i^2, (i^2)^2, (i^2)^3, \ldots, (i^2)^{(n+1)} \] Here, the first term \( a = i^2 \) and the common ratio \( r = i^2 \). 3. **Determine the Number of Terms**: The number of terms in the series is \( n + 1 \) since we start counting from \( i^2 \) to \( i^{2(2n+1)} \). 4. **Use the Formula for the Sum of a Geometric Series**: The sum \( S_n \) of the first \( n \) terms of a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] In our case: - \( a = i^2 \) - \( r = i^2 \) - Number of terms \( n + 1 \) Thus, we can write: \[ S = i^2 \frac{1 - (i^2)^{n+1}}{1 - i^2} \] 5. **Substituting Values**: We know \( i^2 = -1 \), so we substitute: \[ S = (-1) \frac{1 - (-1)^{n+1}}{1 - (-1)} \] 6. **Simplifying the Denominator**: The denominator becomes: \[ 1 - (-1) = 2 \] 7. **Final Expression**: Now substituting back, we get: \[ S = (-1) \frac{1 - (-1)^{n+1}}{2} \] 8. **Evaluating the Expression**: - If \( n + 1 \) is even (i.e., \( n \) is odd), then \( (-1)^{n+1} = 1 \): \[ S = (-1) \frac{1 - 1}{2} = 0 \] - If \( n + 1 \) is odd (i.e., \( n \) is even), then \( (-1)^{n+1} = -1 \): \[ S = (-1) \frac{1 - (-1)}{2} = (-1) \frac{2}{2} = -1 \] ### Conclusion: Thus, the value of \( i^2 + i^4 + i^6 + \ldots \) up to \( (2n + 1) \) terms is: - \( 0 \) if \( n \) is odd, - \( -1 \) if \( n \) is even.

To find the value of \( i^2 + i^4 + i^6 + i^8 + \ldots \) up to \( (2n + 1) \) terms, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Series**: The series given is \( i^2 + i^4 + i^6 + i^8 + \ldots \) up to \( (2n + 1) \) terms. 2. **Recognize the Pattern**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1+i^2+i^4+i^6++i^(2n)

The value of |1/(2+i) - 1/(2 -i)| is

(1+2i)/(1+3i) is equal to

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

The value of (i^5+i^6+i^7+i^8+i^9)/(1+i) is

The value of 1+(1+i)+(1+i^2) +(1+i^3) =

Evaluate 1+i^2+i^4+i^6+...+i^(2n)dot

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

If A^5=O such that A^n != I for 1 <= n <= 4 , then (I - A)^-1 is equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. The value of i^2 + i^4 + i^6 + i^8....upto (2n+1) terms , where i^2 = ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |