Home
Class 12
MATHS
If sqrt(3)+i=(a+i b)(c+i d) , then find ...

If `sqrt(3)+i=(a+i b)(c+i d)` , then find the value of `tan^(-1)(b//a) + tan^(-1)(d//c)dot`

A

`pi/3`

B

`pi/6`

C

`-pi/6`

D

`(5pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{3} + i = (a + ib)(c + id) \), we will proceed step by step. ### Step 1: Expand the right-hand side We start by expanding the product on the right-hand side: \[ (a + ib)(c + id) = ac + i(ad + bc) - bd \] This can be rewritten as: \[ (ac - bd) + i(ad + bc) \] ### Step 2: Compare real and imaginary parts Now, we can compare the real and imaginary parts from both sides of the equation: \[ \text{Real part: } ac - bd = \sqrt{3} \] \[ \text{Imaginary part: } ad + bc = 1 \] ### Step 3: Use the tangent addition formula We need to find the value of \( \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) \). We can use the formula for the sum of two arctangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] where \( x = \frac{b}{a} \) and \( y = \frac{d}{c} \). ### Step 4: Substitute the values Substituting \( x \) and \( y \) into the formula gives us: \[ \tan^{-1}\left(\frac{\frac{b}{a} + \frac{d}{c}}{1 - \frac{bd}{ac}}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{bc + ad}{ac - bd}\right) \] ### Step 5: Substitute known values From our earlier comparisons, we know: - \( ad + bc = 1 \) - \( ac - bd = \sqrt{3} \) Thus, we can substitute these values into our expression: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Step 6: Evaluate the arctangent We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Therefore: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] ### Final Answer Thus, the value of \( \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) \) is: \[ \frac{\pi}{6} \]

To solve the equation \( \sqrt{3} + i = (a + ib)(c + id) \), we will proceed step by step. ### Step 1: Expand the right-hand side We start by expanding the product on the right-hand side: \[ (a + ib)(c + id) = ac + i(ad + bc) - bd \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

If x+i y=sqrt((a+i b)/(c+i d)), then write the value of (x^2+y^2)^2 .

If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2) ,then find the value of tan (2A-3B) .

If a ,\ b ,\ c >0 such that a+b+c=a b c , find the value of tan^(-1)a+tan^(-1)b+tan^(-1)c .

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))

In a triangle A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))= (a) pi/3 (b) pi/4 (c) (5pi)/2 (d) pi/6

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If sqrt(3)+i=(a+i b)(c+i d) , then find the value of tan^(-1)(b//a) + ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |