Home
Class 12
MATHS
If z(1),z(2) and z(3) be unimodular comp...

If `z_(1),z_(2)` and `z_(3)` be unimodular complex numbers, then the maximum value of `|z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2)`, is

A

6

B

9

C

12

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) for unimodular complex numbers \( z_1, z_2, z_3 \), we can follow these steps: ### Step 1: Understand Unimodular Numbers Unimodular complex numbers are those that lie on the unit circle in the complex plane. This means that for any unimodular complex number \( z \), we have \( |z| = 1 \). Therefore, we can express \( z_1, z_2, z_3 \) as: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2}, \quad z_3 = e^{i\theta_3} \] for some angles \( \theta_1, \theta_2, \theta_3 \). ### Step 2: Expand the Expression We want to calculate: \[ y = |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \] Using the property of modulus, we can expand each term: \[ |z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1 - z_2}) = |z_1|^2 + |z_2|^2 - z_1 \overline{z_2} - \overline{z_1} z_2 \] Since \( |z_1| = |z_2| = 1 \), we have \( |z_1|^2 + |z_2|^2 = 2 \). Thus, \[ |z_1 - z_2|^2 = 2 - z_1 \overline{z_2} - \overline{z_1} z_2 \] ### Step 3: Combine the Terms Applying the same expansion for the other two terms: \[ |z_2 - z_3|^2 = 2 - z_2 \overline{z_3} - \overline{z_2} z_3 \] \[ |z_3 - z_1|^2 = 2 - z_3 \overline{z_1} - \overline{z_3} z_1 \] Now, substituting these back into \( y \): \[ y = (2 - z_1 \overline{z_2} - \overline{z_1} z_2) + (2 - z_2 \overline{z_3} - \overline{z_2} z_3) + (2 - z_3 \overline{z_1} - \overline{z_3} z_1) \] \[ y = 6 - (z_1 \overline{z_2} + z_2 \overline{z_1} + z_2 \overline{z_3} + z_3 \overline{z_2} + z_3 \overline{z_1} + z_1 \overline{z_3}) \] ### Step 4: Analyze the Minimum Value The terms \( z_i \overline{z_j} \) can be expressed as \( e^{i(\theta_i - \theta_j)} \). The sum \( z_1 \overline{z_2} + z_2 \overline{z_1} + z_2 \overline{z_3} + z_3 \overline{z_2} + z_3 \overline{z_1} + z_1 \overline{z_3} \) can be minimized. The minimum value occurs when the angles are spaced evenly around the circle. ### Step 5: Maximum Value Calculation The minimum value of the sum \( z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1} + \text{conjugates} \) is \( -3 \) when the angles are \( 0, \frac{2\pi}{3}, \frac{4\pi}{3} \). Thus, substituting back into \( y \): \[ y = 6 - (-3) = 9 \] ### Conclusion The maximum value of \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) is \( \boxed{9} \).

To find the maximum value of \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) for unimodular complex numbers \( z_1, z_2, z_3 \), we can follow these steps: ### Step 1: Understand Unimodular Numbers Unimodular complex numbers are those that lie on the unit circle in the complex plane. This means that for any unimodular complex number \( z \), we have \( |z| = 1 \). Therefore, we can express \( z_1, z_2, z_3 \) as: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2}, \quad z_3 = e^{i\theta_3} \] for some angles \( \theta_1, \theta_2, \theta_3 \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

If z_(1), z_(2) and z_(3) are 3 distinct complex numbers such that (3)/(|z_(1)-z_(2)|)=(5)/(|z_(2)-z_(3)|)=(7)/(|z_(3)-z_(1)|) , then the value of (9)/(z_(1)-z_(2))+(25)/(z_(2)-z_(3))+(49)/(z_(3)-z_(1)) is equal to

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

Let z_(1),z_(2) and z_(3) be three complex number such that |z_(1)-1|= |z_(2) - 1| = |z_(3) -1| and arg ((z_(3) - z_(1))/(z_(2) -z_(1))) = (pi)/(6) then prove that z_(2)^(3) + z_(3)^(3) + 1 = z_(2) + z_(3) + z_(2)z_(3) .

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

Let z_1,z_2 and z_3 be three distinct complex numbers , satisfying |z_1|=|z_2|=|z_3|=1 find maximum value of| z1 - z2 |^2 + |z2-z3|^2 + |z3-z1|^2

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z_(1), z_(2), z_(3) are 3 distinct complex such that (3)/(|z_(1)-z_(2)|)=(5)/(|z_(2)-z_(3)|)=(7)/(|z_(3)-z_(1)|) , then the value of (9barz_(3))/(z_(1)-z_(2))+(25barz_(1))/(z_(2)-z_(3))+(49barz_(2))/(z_(3)-z_(1)) is equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z(1),z(2) and z(3) be unimodular complex numbers, then the maximum ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |