Home
Class 12
MATHS
Let |z1|=i,i=1,2,3,4and |16 z1z2z3+9z1...

Let `|z_1|=i,i=1,2,3,4and |16 z_1z_2z_3+9z_1z_2z_4+4z_1z_3z_4+z_2z_3z_4|=48` ,then the value of `|1/barz_1+4/bar z_2+9/vec z_3+16/bar z_4|`

A

1

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the required expression. ### Step 1: Understand the given information We know that: - \(|z_1| = 1\) - \(|z_2| = 2\) - \(|z_3| = 3\) - \(|z_4| = 4\) We also have the equation: \[ |16 z_1 z_2 z_3 + 9 z_1 z_2 z_4 + 4 z_1 z_3 z_4 + z_2 z_3 z_4| = 48 \] ### Step 2: Factor out the modulus Using the property of moduli, we can factor out \(|z_1 z_2 z_3 z_4|\) from the expression: \[ |z_1 z_2 z_3 z_4| \cdot |16 \frac{1}{z_4} + 9 \frac{1}{z_3} + 4 \frac{1}{z_2} + \frac{1}{z_1}| = 48 \] ### Step 3: Calculate \(|z_1 z_2 z_3 z_4|\) We calculate: \[ |z_1 z_2 z_3 z_4| = |z_1| \cdot |z_2| \cdot |z_3| \cdot |z_4| = 1 \cdot 2 \cdot 3 \cdot 4 = 24 \] ### Step 4: Substitute back into the equation Now substituting back into the equation: \[ 24 \cdot |16 \frac{1}{z_4} + 9 \frac{1}{z_3} + 4 \frac{1}{z_2} + \frac{1}{z_1}| = 48 \] ### Step 5: Solve for the modulus expression Dividing both sides by 24 gives: \[ |16 \frac{1}{z_4} + 9 \frac{1}{z_3} + 4 \frac{1}{z_2} + \frac{1}{z_1}| = \frac{48}{24} = 2 \] ### Final Result Thus, we find that: \[ |1/z_1 + 4/z_2 + 9/z_3 + 16/z_4| = 2 \] ### Conclusion The value of \(|1/\bar{z_1} + 4/\bar{z_2} + 9/\bar{z_3} + 16/\bar{z_4}|\) is \(2\). ---

To solve the problem step by step, we will analyze the given conditions and derive the required expression. ### Step 1: Understand the given information We know that: - \(|z_1| = 1\) - \(|z_2| = 2\) - \(|z_3| = 3\) - \(|z_4| = 4\) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

Let z_1, z_2 , z_3 in C such that |z_1 | = |z_2| = |z_3| = |z_1+ z_2+ z _3| = 4 . If |z_1 - z _2 | = | z _1 + z _ 3 | and z_2 ne z_3 , then values of |z_1 + z_2 |* |z_1 + z _ 3| is _____.

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_1=7+6i,z_2=2+2i and z_3=1-4i then find z_1-z_2+z_3

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. Let |z1|=i,i=1,2,3,4and |16 z1z2z3+9z1z2z4+4z1z3z4+z2z3z4|=48 ,then ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |