Home
Class 12
MATHS
If |z(1)|=|z(2)|=|z(3)|=1 and z(1)+z(2)+...

If `|z_(1)|=|z_(2)|=|z_(3)|=1` and `z_(1)+z_(2)+z_(3)=sqrt(2)+i`, then the complex number `z_(2)barz_(3)+z_(3)barz_(1)+z_(1)barz_(2)`, is

A

purely real

B

purely imaginary

C

a positive real number

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( |z_1| = |z_2| = |z_3| = 1 \) 2. \( z_1 + z_2 + z_3 = \sqrt{2} + i \) We need to find the value of \( z_2 \overline{z_3} + z_3 \overline{z_1} + z_1 \overline{z_2} \). ### Step 1: Modulus of the Sum First, we take the modulus of both sides of the equation \( z_1 + z_2 + z_3 = \sqrt{2} + i \). \[ |z_1 + z_2 + z_3| = |\sqrt{2} + i| \] ### Step 2: Calculate the Modulus of the Right Side Now, calculate the modulus of the right side: \[ |\sqrt{2} + i| = \sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{2 + 1} = \sqrt{3} \] ### Step 3: Square Both Sides Next, we square both sides: \[ |z_1 + z_2 + z_3|^2 = |\sqrt{3}|^2 \] This gives us: \[ |z_1 + z_2 + z_3|^2 = 3 \] ### Step 4: Expand the Left Side Now, we expand the left side using the properties of modulus: \[ |z_1 + z_2 + z_3|^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + 2 \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] Since \( |z_1| = |z_2| = |z_3| = 1 \), we have: \[ |z_1|^2 = |z_2|^2 = |z_3|^2 = 1 \] Thus, \[ 1 + 1 + 1 + 2 \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 3 \] ### Step 5: Simplify the Equation This simplifies to: \[ 3 + 2 \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 3 \] ### Step 6: Solve for the Real Part Subtracting 3 from both sides gives: \[ 2 \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 0 \] Dividing by 2: \[ \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 0 \] ### Step 7: Find the Desired Expression We need to find \( z_2 \overline{z_3} + z_3 \overline{z_1} + z_1 \overline{z_2} \). Since the real part of this expression is 0, it implies that this expression is purely imaginary. ### Conclusion Thus, the complex number \( z_2 \overline{z_3} + z_3 \overline{z_1} + z_1 \overline{z_2} \) is purely imaginary.

To solve the problem, we start with the given conditions: 1. \( |z_1| = |z_2| = |z_3| = 1 \) 2. \( z_1 + z_2 + z_3 = \sqrt{2} + i \) We need to find the value of \( z_2 \overline{z_3} + z_3 \overline{z_1} + z_1 \overline{z_2} \). ### Step 1: Modulus of the Sum ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Show that if z_(1)z_(2)+z_(3)z_(4)=0 and z_(1)+z_(2)=0 ,then the complex numbers z_(1),z_(2),z_(3),z_(4) are concyclic.

Find the complex number z if zbarz = 2 and z + barz=2

z_(1),z_(2),z_(3) and z'_(1),z'_(2),z'_(3) are nonzero complex numbers such that z_(3) = (1-lambda)z_(1) + lambdaz_(2) and z'_(3) = (1-mu)z'_(1) + mu z'_(2) , then which of the following statements is/are ture?

If the complex numbers z_(1),z_(2),z_(3) are in AP, then they lie on

Let z_(1),z_(2) and z_(3) be three complex number such that |z_(1)-1|= |z_(2) - 1| = |z_(3) -1| and arg ((z_(3) - z_(1))/(z_(2) -z_(1))) = (pi)/(6) then prove that z_(2)^(3) + z_(3)^(3) + 1 = z_(2) + z_(3) + z_(2)z_(3) .

If z_(1), z_(2), z_(3) are 3 distinct complex such that (3)/(|z_(1)-z_(2)|)=(5)/(|z_(2)-z_(3)|)=(7)/(|z_(3)-z_(1)|) , then the value of (9barz_(3))/(z_(1)-z_(2))+(25barz_(1))/(z_(2)-z_(3))+(49barz_(2))/(z_(3)-z_(1)) is equal to

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If az_(1)+bz_(2)+cz_(3)=0 for complex numbers z_(1),z_(2),z_(3) and real numbers a,b,c then z_(1),z_(2),z_(3) lie on a

If k gt 1, |z_(1)| lt k and |(k-z_(1)barz_(2))/(z_(1)-kz_(2))|=1 , then

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If |z(1)|=|z(2)|=|z(3)|=1 and z(1)+z(2)+z(3)=sqrt(2)+i, then the compl...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |