Home
Class 12
MATHS
If ((1+i)/(1-i))^x = 1, then...

If `((1+i)/(1-i))^x = 1,` then

A

`x=2n+1`, where n is any positive integer.

B

x=4n, where n is any positive integer

C

x=2n, where n is any positive integer

D

x=4n+1, where n is any positive integer.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{1+i}{1-i}\right)^x = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we will multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] ### Step 2: Calculate the numerator and denominator **Numerator:** \[ (1+i)(1+i) = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] **Denominator:** \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] ### Step 3: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 4: Substitute back into the equation Now we substitute this back into the original equation: \[ (i)^x = 1 \] ### Step 5: Analyze the equation \(i^x = 1\) The complex number \(i\) can be expressed in exponential form as: \[ i = e^{i\frac{\pi}{2}} \] Thus, we can write: \[ i^x = \left(e^{i\frac{\pi}{2}}\right)^x = e^{i\frac{\pi}{2}x} \] For \(e^{i\frac{\pi}{2}x} = 1\), the exponent must be an integer multiple of \(2\pi\): \[ \frac{\pi}{2}x = 2n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 6: Solve for \(x\) Solving for \(x\): \[ x = \frac{2n\pi}{\frac{\pi}{2}} = 4n \] where \(n\) is any integer. ### Conclusion Thus, \(x\) must be a multiple of \(4\): \[ x = 4n \quad \text{where } n \in \mathbb{Z}^+ \]

To solve the equation \(\left(\frac{1+i}{1-i}\right)^x = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we will multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^2=x+i y , find x+ydot

If ((1+i)/(1-i))^(x)=1 AA n in N is (i) x = 2n+1 (ii) x =4n (iii) x=2n (iv) x=4n+1

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y ,\ fin d\ (x , y)

If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+i y ,\ fin d\ (x , y)

The least positive integer n for which ((1+i)/(1-i))^n= 2/pi sin^-1 ((1+x^2)/(2x)) , where x> 0 and i=sqrt-1 is

If ( 1+i) (1+ 2i) (1+ 3i) …(1 +ni) = x+ iy, then 2,5,10 ….( 1+n^(2)) = x^(k) +y^(k) The value of k is :

If (1+i)(1+2i)(1+3i)1+m)=(x+i y) , then show that 2xx5xx10xxxx(1+n^2)=x^2+y^2dot

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If ((1+i)/(1-i))^x = 1, then

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |