Home
Class 12
MATHS
Taking the value of the square root with...

Taking the value of the square root with positive real part only, the value of `sqrt(7+24i)+sqrt(-7-24i)`, is

A

`1+7i`

B

`-1-7i`

C

`7-i`

D

`-7+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{7 + 24i} + \sqrt{-7 - 24i} \), we will follow these steps: ### Step 1: Find \( \sqrt{7 + 24i} \) Assume \( \sqrt{7 + 24i} = x + yi \), where \( x \) and \( y \) are real numbers. Squaring both sides gives: \[ 7 + 24i = (x + yi)^2 = x^2 - y^2 + 2xyi \] ### Step 2: Equate real and imaginary parts From the equation \( 7 + 24i = x^2 - y^2 + 2xyi \), we can equate the real and imaginary parts: 1. \( x^2 - y^2 = 7 \) (1) 2. \( 2xy = 24 \) (2) From equation (2), we can simplify to find \( xy \): \[ xy = 12 \] ### Step 3: Substitute \( y \) in terms of \( x \) From \( xy = 12 \), we can express \( y \) as: \[ y = \frac{12}{x} \] ### Step 4: Substitute \( y \) into the first equation Substituting \( y \) into equation (1): \[ x^2 - \left(\frac{12}{x}\right)^2 = 7 \] This simplifies to: \[ x^2 - \frac{144}{x^2} = 7 \] ### Step 5: Multiply through by \( x^2 \) To eliminate the fraction, multiply through by \( x^2 \): \[ x^4 - 144 = 7x^2 \] Rearranging gives: \[ x^4 - 7x^2 - 144 = 0 \] ### Step 6: Let \( z = x^2 \) Let \( z = x^2 \), then we have: \[ z^2 - 7z - 144 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ z = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot (-144)}}{2 \cdot 1} \] \[ z = \frac{7 \pm \sqrt{49 + 576}}{2} \] \[ z = \frac{7 \pm \sqrt{625}}{2} \] \[ z = \frac{7 \pm 25}{2} \] Calculating the two possible values: 1. \( z = \frac{32}{2} = 16 \) (valid) 2. \( z = \frac{-18}{2} = -9 \) (not valid) Thus, \( x^2 = 16 \) implies \( x = 4 \) (taking the positive root since we want the positive real part). ### Step 8: Find \( y \) Now substituting \( x = 4 \) back into \( y = \frac{12}{x} \): \[ y = \frac{12}{4} = 3 \] Thus, we have: \[ \sqrt{7 + 24i} = 4 + 3i \] ### Step 9: Find \( \sqrt{-7 - 24i} \) Assume \( \sqrt{-7 - 24i} = a + bi \). Squaring gives: \[ -7 - 24i = (a + bi)^2 = a^2 - b^2 + 2abi \] Equating real and imaginary parts: 1. \( a^2 - b^2 = -7 \) (3) 2. \( 2ab = -24 \) (4) From equation (4): \[ ab = -12 \] ### Step 10: Substitute \( b \) in terms of \( a \) From \( ab = -12 \): \[ b = \frac{-12}{a} \] ### Step 11: Substitute \( b \) into the first equation Substituting into equation (3): \[ a^2 - \left(\frac{-12}{a}\right)^2 = -7 \] This simplifies to: \[ a^2 - \frac{144}{a^2} = -7 \] ### Step 12: Multiply through by \( a^2 \) Multiply through by \( a^2 \): \[ a^4 + 7a^2 - 144 = 0 \] ### Step 13: Let \( w = a^2 \) Let \( w = a^2 \): \[ w^2 + 7w - 144 = 0 \] ### Step 14: Solve the quadratic equation Using the quadratic formula: \[ w = \frac{-7 \pm \sqrt{7^2 + 4 \cdot 144}}{2} \] \[ w = \frac{-7 \pm \sqrt{49 + 576}}{2} \] \[ w = \frac{-7 \pm 25}{2} \] Calculating the two possible values: 1. \( w = \frac{18}{2} = 9 \) (valid) 2. \( w = \frac{-32}{2} = -16 \) (not valid) Thus, \( a^2 = 9 \) implies \( a = 3 \) (taking the positive root). ### Step 15: Find \( b \) Now substituting \( a = 3 \) back into \( b = \frac{-12}{a} \): \[ b = \frac{-12}{3} = -4 \] Thus, we have: \[ \sqrt{-7 - 24i} = 3 - 4i \] ### Step 16: Combine the results Now we can combine the results: \[ \sqrt{7 + 24i} + \sqrt{-7 - 24i} = (4 + 3i) + (3 - 4i) \] \[ = 4 + 3 + (3i - 4i) = 7 - i \] ### Final Answer The value of \( \sqrt{7 + 24i} + \sqrt{-7 - 24i} \) is: \[ \boxed{7 - i} \]

To solve the expression \( \sqrt{7 + 24i} + \sqrt{-7 - 24i} \), we will follow these steps: ### Step 1: Find \( \sqrt{7 + 24i} \) Assume \( \sqrt{7 + 24i} = x + yi \), where \( x \) and \( y \) are real numbers. Squaring both sides gives: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Write the values of the square root of -i .

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

The value of log_((8-3sqrt7))(8+3sqrt7) is

Find all possible values of sqrt(i)+sqrt(-i)dot

Find the square root of -7-24i

The square roots of 7+24i are

Find the value of 5/(sqrt11-sqrt7)

Find all possible values of sqrt(i)+sqrt(-i)dot .

The value of 5^(sqrtlog_5 7)-7^sqrt(log_7 5) is

Find the square root of 4+4sqrt(3)i

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. Taking the value of the square root with positive real part only, the ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |