Home
Class 12
MATHS
Principal argument of complex number z=(...

Principal argument of complex number `z=(sqrt3+i)/(sqrt3-i)` equal

A

`-pi/3`

B

`pi/3`

C

`pi/6`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal argument of the complex number \( z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \), we can follow these steps: ### Step 1: Multiply by the Conjugate To simplify the complex number, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \cdot \frac{\sqrt{3} + i}{\sqrt{3} + i} \] ### Step 2: Simplify the Denominator The denominator becomes: \[ (\sqrt{3} - i)(\sqrt{3} + i) = \sqrt{3}^2 - i^2 = 3 - (-1) = 3 + 1 = 4 \] ### Step 3: Simplify the Numerator The numerator becomes: \[ (\sqrt{3} + i)(\sqrt{3} + i) = \sqrt{3}^2 + 2\sqrt{3}i + i^2 = 3 + 2\sqrt{3}i - 1 = 2 + 2\sqrt{3}i \] ### Step 4: Combine the Results Now we can combine the results: \[ z = \frac{2 + 2\sqrt{3}i}{4} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \] ### Step 5: Identify \( a \) and \( b \) Here, we have: \[ a = \frac{1}{2}, \quad b = \frac{\sqrt{3}}{2} \] ### Step 6: Calculate the Argument The argument of a complex number \( z = a + bi \) can be calculated using the formula: \[ \text{arg}(z) = \tan^{-1}\left(\frac{b}{a}\right) \] Substituting the values of \( a \) and \( b \): \[ \text{arg}(z) = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) = \tan^{-1}(\sqrt{3}) \] ### Step 7: Determine the Angle We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, the principal argument is: \[ \text{arg}(z) = \frac{\pi}{3} \] ### Final Answer The principal argument of the complex number \( z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \) is: \[ \frac{\pi}{3} \] ---

To find the principal argument of the complex number \( z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \), we can follow these steps: ### Step 1: Multiply by the Conjugate To simplify the complex number, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{\sqrt{3} + i}{\sqrt{3} - i} \cdot \frac{\sqrt{3} + i}{\sqrt{3} + i} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

The sum of principal arguments of complex numbers 1+i,-1+isqrt3,-sqrt3-i,sqrt3-i,i,-3i,2,-1 is

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

The argument of the complex number ((3+i)/(2-i)+(3-i)/(2+i)) is equal to

bb"Statement-1" If the principal argument of a complex numbere z is 0, the principal argument of z^(2) " is " 2theta . bb"Statement-2" arg(z^(2))=2arg(z)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

Find the modulus, argument, and the principal argument of the complex numbers. (i-1)/(i(1-cos((2pi)/5))+sin((2pi)/5)

Find the principal argument of the complex number sin(6pi)/5+i(1+cos(6pi)/5)dot

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Write the real and imaginary parts of the complex number: sqrt(37)/3+3/sqrt(70) i

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. Principal argument of complex number z=(sqrt3+i)/(sqrt3-i) equal

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |