Home
Class 12
MATHS
If z is complex number of unit modulus...

If z is complex number of unit modulus and argument `theta` then arg `((1+z)/(1+barz))` equals

A

`-theta`

B

`pi/2-theta`

C

`theta`

D

`pi-theta`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `|z|=1` and arg(z)=`theta`
`therefore z=e^(itheta)` and `arg(barz)=e^(-itheta)`
`rArr barz=1/z`
`therefore "arg" (1+z)/(1+barz)="arg"(1+z)/(1+1/z)="arg"(z)=theta`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number of unit modulus and argument q, then a r g((1+z)/(1+ bar z)) equal (1) pi/2-theta (2) theta (3) pi-theta (4) -theta

If z is a complex number of unit modulus and argument theta , then the real part of (z(1-barz))/(barz(1+z)) , is

Find the complex number z if zbarz = 2 and z + barz=2

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

If z lies on unit circle with center at the origin, then (1+z)/(1+barz) is equal to

Find the modulus and the arguments of the complex number z = - 1 - isqrt(3)

If z is a complex number such that |z - barz| +|z + barz| = 4 then find the area bounded by the locus of z.

Find the modulus and argument of the following complex number: z= (1+i)^13/(1-i)^7

Let z_(1),z_(2) be two distinct complex numbers with non-zero real and imaginary parts such that "arg"(z_(1)+z_(2))=pi//2 , then "arg"(z_(1)+bar(z)_(1))-"arg"(z_(2)+bar(z)_(2)) is equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z is complex number of unit modulus and argument theta then arg ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |