Home
Class 12
MATHS
If omega=z/(z-1/3i) and abs(omega)=1, wh...

If `omega=z/(z-1/3i)` and `abs(omega)=1`, where `i=sqrt(-1)`,then lies on

A

a parabola

B

a straight line

C

a circle

D

an ellipse

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`omega=z/(z-i/3)` and `|omega|=1`
`rArr |z/(z-i/3)|=1`
`rArr |z|/|z-i/3|=1`
`rArr |z|=|z-(0+1/3i)|=1`
`rArr` z lies on the perpendicular bisector of the line segment joining O(0,0) and `A(0,1//3)`, which is a straight line.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If (z+1)/(z+i) is a purely imaginary number (where (i=sqrt(-1) ), then z lies on a

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

Prove that z=i^i, where i=sqrt-1, is purely real.

If the complex number z is to satisfy abs(z)=3, abs(z-{a(1+i)-i}) le 3 and abs(z+2a-(a+1)i) gt 3 , where i=sqrt(-1) simultaneously for atleast one z, then find all a in R .

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If omega=z/(z-1/3i) and abs(omega)=1, where i=sqrt(-1),then lies on

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |